Previous |  Up |  Next

Article

Keywords:
one-sided maximal operator; Sobolev space; bounded variation; continuity
Summary:
In this paper we study the regularity properties of the one-dimensional one-sided Hardy-Littlewood maximal operators $\mathcal {M}^+$ and $\mathcal {M}^-$. More precisely, we prove that $\mathcal {M}^+$ and $\mathcal {M}^-$ map $W^{1,p}(\mathbb {R})\rightarrow W^{1,p}(\mathbb {R})$ with $1<p<\infty $, boundedly and continuously. In addition, we show that the discrete versions $M^+$ and $M^-$ map ${\rm BV}(\mathbb {Z})\rightarrow {\rm BV}(\mathbb {Z})$ boundedly and map $l^1(\mathbb {Z})\rightarrow {\rm BV}(\mathbb {Z})$ continuously. Specially, we obtain the sharp variation inequalities of $M^+$ and $M^-$, that is, $${\rm Var}(M^{+}(f))\leq {\rm Var}(f)\quad \text {and}\quad {\rm Var}(M^{-}(f))\leq {\rm Var}(f)$$ if $f\in {\rm BV}(\mathbb {Z})$, where ${\rm Var}(f)$ is the total variation of $f$ on $\mathbb {Z}$ and ${\rm BV}(\mathbb {Z})$ is the set of all functions $f\colon \mathbb {Z}\rightarrow \mathbb {R}$ satisfying ${\rm Var}(f)<\infty $.
References:
[1] Aldaz, J. M., Lázaro, J. Pérez: Functions of bounded variation, the derivative of the one dimensional maximal function, and applications to inequalities. Trans. Am. Math. Soc. 359 (2007), 2443-2461. DOI 10.1090/S0002-9947-06-04347-9 | MR 2276629 | Zbl 1143.42021
[2] Bober, J., Carneiro, E., Hughes, K., Pierce, L. B.: On a discrete version of Tanaka's theorem for maximal functions. Proc. Am. Math. Soc. 140 (2012), 1669-1680. DOI 10.1090/S0002-9939-211-11008-6 | MR 2869151 | Zbl 1245.42017
[3] Calderón, A. P.: Ergodic theory and translation invariant operators. Proc. Natl. Acad. Sci. USA 59 (1968), 349-353. DOI 10.1073/pnas.59.2.349 | MR 0227354 | Zbl 0185.21806
[4] Carneiro, E., Hughes, K.: On the endpoint regularity of discrete maximal operators. Math. Res. Lett. 19 (2012), 1245-1262. DOI 10.4310/MRL.2012.v19.n6.a6 | MR 3091605 | Zbl 1286.42026
[5] Carneiro, E., Moreira, D.: On the regularity of maximal operators. Proc. Am. Math. Soc. 136 (2008), 4395-4404. DOI 10.1090/S0002-9939-08-09515-4 | MR 2431055 | Zbl 1157.42003
[6] Dunford, N., Schwartz, J.: Convergence almost everywhere of operator averages. Proc. Natl. Acad. Sci. USA 41 (1955), 229-231. DOI 10.1073/pnas.41.4.229 | MR 0070980 | Zbl 0064.37001
[7] Hajłasz, P., Onninen, J.: On boundedness of maximal functions in Sobolev spaces. Ann. Acad. Sci. Fenn. Math. 29 (2004), 167-176. MR 2041705 | Zbl 1059.46020
[8] Hardy, G. H., Littlewood, J. E.: A maximal theorem with function-theoretic applications. Acta Math. 54 (1930), 81-116 \99999JFM99999 56.0264.02. DOI 10.1007/BF02547518 | MR 1555303
[9] Kinnunen, J.: The Hardy-Littlewood maximal function of a Sobolev function. Isr. J. Math. 100 (1997), 117-124. DOI 10.1007/BF02773636 | MR 1469106 | Zbl 0882.43003
[10] Kinnunen, J., Lindqvist, P.: The derivative of the maximal function. J. Reine Angew. Math. 503 (1998), 161-167. DOI 10.1515/crll.1998.095 | MR 1650343 | Zbl 0904.42015
[11] Kinnunen, J., Saksman, E.: Regularity of the fractional maximal function. Bull. Lond. Math. Soc. 35 (2003), 529-535. DOI 10.1112/S0024609303002017 | MR 1979008 | Zbl 1021.42009
[12] Kurka, O.: On the variation of the Hardy-Littlewood maximal function. Ann. Acad. Sci. Fenn. Math. 40 (2015), 109-133. DOI 10.5186/aasfm.2015.4003 | MR 3310075 | Zbl 06496747
[13] Liu, F., Chen, T., Wu, H.: A note on the endpoint regularity of the Hardy-Littlewood maximal functions. Bull. Aust. Math. Soc. 94 (2016), 121-130. DOI 10.1017/S0004972715001392 | MR 3539328 | Zbl 1347.42034
[14] Liu, F., Wu, H.: On the regularity of the multisublinear maximal functions. Can. Math. Bull. 58 (2015), 808-817. DOI 104153/CMB-2014-070-7 | MR 3415670 | Zbl 06527789
[15] Luiro, H.: Continuity of the maximal operator in Sobolev spaces. Proc. Am. Math. Soc. 135 (2007), 243-251. DOI 10.1090/S0002-9939-06-08455-3 | MR 2280193 | Zbl 1136.42018
[16] Luiro, H.: On the regularity of the Hardy-Littlewood maximal operator on subdomains of $\mathbb{R}^n$. Proc. Edinb. Math. Soc. II. 53 (2010), 211-237. DOI 10.1017/S0013091507000867 | MR 2579688 | Zbl 1183.42025
[17] Sawyer, E.: Weighted inequalities for the one-sided Hardy-Littlewood maximal function. Trans. Am. Math. Soc. 297 (1986), 53-61. DOI 10.1090/S0002-9947-1986-0849466-0 | MR 0849466 | Zbl 0627.42009
[18] Stein, E. M., Shakarchi, R.: Real Analysis. Measure Theory, Integration, and Hilbert Spaces. Princeton Lectures in Analysis 3, Princeton University Press, Princeton (2005). MR 2129625 | Zbl 1081.28001
[19] Tanaka, H.: A remark on the derivative of the one-dimensional Hardy-Littlewood maximal function. Bull. Aust. Math. Soc. 65 (2002), 253-258. DOI 10.1017/S0004972700020293 | MR 1898539 | Zbl 0999.42013
[20] Temur, F.: On regularity of the discrete Hardy-Littlewood maximal function. Available at ArXiv:1303.3993v1 [math.CA].
Partner of
EuDML logo