Previous |  Up |  Next

Article

Keywords:
annihilator graph; zero-divisor graph; outerplanar; ring-graph; cut-vertex; clique number; weakly perfect; chromatic number; polynomial ring; ring of fractions
Summary:
Let $R$ be a commutative ring. The annihilator graph of $R$, denoted by ${\rm AG}(R)$, is the undirected graph with all nonzero zero-divisors of $R$ as vertex set, and two distinct vertices $x$ and $y$ are adjacent if and only if ${\rm ann}_R(xy) \neq {\rm ann}_R(x)\cup {\rm ann}_R(y)$, where for $z \in R$, ${\rm ann}_R(z) = \lbrace r \in R \colon rz = 0\rbrace $. In this paper, we characterize all finite commutative rings $R$ with planar or outerplanar or ring-graph annihilator graphs. We characterize all finite commutative rings $R$ whose annihilator graphs have clique number $1$, $2$ or $3$. Also, we investigate some properties of the annihilator graph under the extension of $R$ to polynomial rings and rings of fractions. For instance, we show that the graphs ${\rm AG}(R)$ and ${\rm AG}(T(R))$ are isomorphic, where $T(R)$ is the total quotient ring of $R$. Moreover, we investigate some properties of the annihilator graph of the ring of integers modulo $n$, where $n \geq 1$.
References:
[1] Afkhami, M.: When the comaximal and zero-divisor graphs are ring graphs and outerplanar. Rocky Mt. J. Math. 44 (2014), 1745-1761. DOI 10.1216/RMJ-2014-44-6-1745 | MR 3310946 | Zbl 1306.05092
[2] Afkhami, M., Barati, Z., Khashyarmanesh, K.: When the unit, unitary and total graphs are ring graphs and outerplanar. Rocky Mt. J. Math. 44 (2014), 705-716. DOI 10.1216/RMJ-2014-44-3-705 | MR 3264477 | Zbl 1301.05075
[3] Akbari, S., Maimani, H. R., Yassemi, S.: When a zero-divisor graph is planar or a complete {$r$}-partite graph. J. Algebra 270 (2003), 169-180. DOI 10.1016/S0021-8693(03)00370-3 | MR 2016655 | Zbl 1032.13014
[4] D. F. Anderson, M. C. Axtell, J. A. Stickles, Jr.: Zero-divisor graphs in commutative rings. Commutative Algebra. Noetherian and Non-Noetherian Perspectives M. Fontana et al. Springer, New York (2011), 23-45. DOI 10.1007/978-1-4419-6990-3_2 | MR 2762487 | Zbl 1225.13002
[5] Anderson, D. F., Badawi, A.: On the zero-divisor graph of a ring. Commun. Algebra 36 (2008), 3073-3092. DOI 10.1080/00927870802110888 | MR 2440301 | Zbl 1152.13001
[6] Anderson, D. F., Badawi, A.: The total graph of a commutative ring. J. Algebra 320 (2008), 2706-2719. DOI 10.1016/j.jalgebra.2008.06.028 | MR 2441996 | Zbl 1158.13001
[7] Anderson, D. F., Levy, R., Shapiro, J.: Zero-divisor graphs, von Neumann regular rings, and Boolean algebras. J. Pure Appl. Algebra 180 (2003), 221-241. DOI 10.1016/S0022-4049(02)00250-5 | MR 1966657 | Zbl 1076.13001
[8] Anderson, D. F., Livingston, P. S.: The zero-divisor graph of a commutative ring. J. Algebra 217 (1999), 434-447. DOI 10.1006/jabr.1998.7840 | MR 1700509 | Zbl 0941.05062
[9] Anderson, D. D., Naseer, M.: Beck's coloring of a commutative ring. J. Algebra 159 (1993), 500-514. DOI 10.1006/jabr.1993.1171 | MR 1231228 | Zbl 0798.05067
[10] Ashrafi, N., Maimani, H. R., Pournaki, M. R., Yassemi, S.: Unit graphs associated with rings. Commun. Algebra 38 (2010), 2851-2871. DOI 10.1080/00927870903095574 | MR 2730284 | Zbl 1219.05150
[11] Atiyah, M. F., Macdonald, I. G.: Introduction to Commutative Algebra. Series in Mathematics, Addison-Wesley Publishing Company, Reading, London (1969). MR 0242802 | Zbl 0175.03601
[12] Badawi, A.: On the annihilator graph of a commutative ring. Commun. Algebra 42 (2014), 108-121. DOI 10.1080/00927872.2012.707262 | MR 3169557 | Zbl 1295.13006
[13] Badawi, A.: On the dot product graph of a commutative ring. Commun. Algebra 43 (2015), 43-50. DOI 10.1080/00927872.2014.897188 | MR 3240402 | Zbl 1316.13005
[14] Barati, Z., Khashyarmanesh, K., Mohammadi, F., Nafar, K.: On the associated graphs to a commutative ring. J. Algebra Appl. 11 (2012), 1250037, 17 pages. DOI 10.1142/S0219498811005610 | MR 2925450 | Zbl 1238.13015
[15] Beck, I.: Coloring of commutative rings. J. Algebra 116 (1988), 208-226. DOI 10.1016/0021-8693(88)90202-5 | MR 0944156 | Zbl 0654.13001
[16] Belshoff, R., Chapman, J.: Planar zero-divisor graphs. J. Algebra 316 (2007), 471-480. DOI 10.1016/j.jalgebra.2007.01.049 | MR 2354873 | Zbl 1129.13028
[17] Coté, B., Ewing, C., Huhn, M., Plaut, C. M., Weber, D.: Cut-sets in zero-divisor graphs of finite commutative rings. Commun. Algebra 39 (2011), 2849-2861. DOI 10.1080/00927872.2010.489534 | MR 2834134 | Zbl 1228.13011
[18] Gitler, I., Reyes, E., Villarreal, R. H.: Ring graphs and complete intersection toric ideals. Discrete Math. 310 (2010), 430-441. DOI 10.1016/j.disc.2009.03.020 | MR 2564795 | Zbl 1198.05089
[19] Kelarev, A.: Graph Algebras and Automata. Pure and Applied Mathematics 257, Marcel Dekker, New York (2003). MR 2064147 | Zbl 1070.68097
[20] Kelarev, A.: Labelled Cayley graphs and minimal automata. Australas. J. Comb. 30 (2004), 95-101. MR 2080457 | Zbl 1152.68482
[21] Kelarev, A., Ryan, J., Yearwood, J.: Cayley graphs as classifiers for data mining: The influence of asymmetries. Discrete Math. 309 (2009), 5360-5369. DOI 10.1016/j.disc.2008.11.030 | MR 2548552 | Zbl 1206.05050
[22] Maimani, H. R., Salimi, M., Sattari, A., Yassemi, S.: Comaximal graph of commutative rings. J. Algebra 319 (2008), 1801-1808. DOI 10.1016/j.jalgebra.2007.02.003 | MR 2383067 | Zbl 1141.13008
[23] West, D. B.: Introduction to Graph Theory. Prentice Hall, Upper Saddle River (1996). MR 1367739 | Zbl 0845.05001
Partner of
EuDML logo