Previous |  Up |  Next

Article

Keywords:
OD-characterization of finite group; prime graph; degree pattern; simple group; $2$-Frobenius group
Summary:
Let $G$ be a finite group and let $\pi(G)=\{p_1, p_2,\ldots, p_k\}$ be the set of prime divisors of $|G|$ for which $p_1< p_2< \cdots < p_k$. The Gruenberg-Kegel graph of $G$, denoted $\operatorname{GK} (G)$, is defined as follows: its vertex set is $\pi(G)$ and two different vertices $p_i$ and $p_j$ are adjacent by an edge if and only if $G$ contains an element of order $p_i p_j$. The degree of a vertex $p_i$ in ${\rm GK}(G)$ is denoted by $d_G(p_i)$ and the $k$-tuple $D(G)= (d_G(p_1), d_G(p_2),\ldots, d_G(p_k))$ is said to be the degree pattern of $G$. Moreover, if $\omega \subseteq \pi(G)$ is the vertex set of a connected component of $\operatorname{GK} (G)$, then the largest $\omega$-number which divides $|G|$, is said to be an order component of $\operatorname{GK} (G)$. We will say that the problem of OD-characterization is solved for a finite group if we find the number of pairwise non-isomorphic finite groups with the same order and degree pattern as the group under study. The purpose of this article is twofold. First, we completely solve the problem of OD-characterization for every finite non-abelian simple group with orders having prime divisors at most 29. In particular, we show that there are exactly two non-isomorphic finite groups with the same order and degree pattern as $U_4(2)$. Second, we prove that there are exactly two non-isomorphic finite groups with the same order components as $U_5(2)$.
References:
[1] Akbari B., Moghaddamfar A.R.: Recognizing by order and degree pattern of some projective special linear groups. Internat. J. Algebra Comput. 22 (2012), no. 6, 1250051, 22 pages. DOI 10.1142/S0218196712500518 | MR 2974105 | Zbl 1266.20037
[2] Akbari B., Moghaddamfar A.R.: On recognition by order and degree pattern of finite simple groups. Southeast Asian Bull. Math. 39 (2015), no. 2, 163–172. MR 3363927 | Zbl 1340.20031
[3] Akbari B., Moghaddamfar A.R.: OD-characterization of certain four dimensional linear groups with related results concerning degree patterns. Front. Math. China 10 (2015), no. 1, 1–31. DOI 10.1007/s11464-014-0430-2 | MR 3284941 | Zbl 1321.20024
[4] Akbari B., Moghaddamfar A.R.: Simple groups which are $2$-fold OD-characterizable. Bull. Malays. Math. Sci. Soc. 35 (2012), no. 1, 65–77. MR 2865121 | Zbl 1241.20020
[5] Akbari M., Moghaddamfar A.R., Rahbariyan S.: A characterization of some finite simple groups through their orders and degree patterns. Algebra Colloq. 19 (2012), no. 3, 473–482. DOI 10.1142/S1005386712000338 | MR 2999256 | Zbl 1250.20010
[6] Alavi S.H, Daneshkhah A.: A new characterization of alternating and symmetric groups. J. Appl. Math. Comput. 17 (2005), no. 1–2, 245–258. DOI 10.1007/BF02936052 | MR 2108803 | Zbl 1066.20012
[7] Chen G.Y.: A new characterization of sporadic simple groups. Algebra Colloq. 3 (1996), no. 1, 49–58. MR 1374160 | Zbl 1332.20012
[8] Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A.: Atlas of Finite Groups. Clarendon Press, Oxford, 1985. MR 0827219 | Zbl 0568.20001
[9] Hoseini A.A., Moghaddamfar A.R.: Recognizing alternating groups $A_{p+3}$ for certain primes $p$ by their orders and degree patterns. Front. Math. China 5 (2010), no. 3, 541–553. DOI 10.1007/s11464-010-0011-y | MR 2660528 | Zbl 1205.20029
[10] Iranmanesh A., Alavi S.H., Khosravi B.: A characterization of $ PSL(3,q)$ where $q$ is an odd prime power. J. Pure Appl. Algebra 170 (2002), no. 2–3, 243–254. DOI 10.1016/S0022-4049(01)00113-X | MR 1904845 | Zbl 1001.20005
[11] Iranmanesh A., Khosravi B.: A characterization of $C_2 (q)$ where $q>5$. Comment. Math. Univ. Carolin. 43 (2002), no. 1, 9–21. MR 1903303 | Zbl 1068.20020
[12] Khosravi A., Khosravi B.: $r$-recognizability of $B_n(q)$ and $C_n(q)$ where $n=2^m\geqslant 4$. J. Pure Appl. Algebra 199 (2005), no. 1–3, 149–165. MR 2134298 | Zbl 1076.20008
[13] Khosravi B.: Some characterizations of $L_9 (2)$ related to its prime graph. Publ. Math. Debrecen 75 (2009), no. 3–4, 375–385. MR 2588212 | Zbl 1207.20008
[14] Khosravi Beh., Khosravi Bah.: A characterization of ${\sp 2E}_6 (q)$. Kumamoto J. Math. 16 (2003), 1–11. MR 1975291
[15] Kogani-Moghaddam R., Moghaddamfar A.R.: Groups with the same order and degree pattern. Sci. China Math. 55 (2012), no. 4, 701–720. DOI 10.1007/s11425-011-4314-6 | MR 2903455 | Zbl 1252.20010
[16] Kondrat'ev A.S.: On prime graph components of finite simple groups. Math. Sb. 180 (1989), no. 6, 787–797. MR 1015040 | Zbl 0691.20013
[17] Lucido M.S., Moghaddamfar A.R.: Groups with complete prime graph connected components. J. Group Theory 7 (2004), no. 3, 373–384. DOI 10.1515/jgth.2004.013 | MR 2063403 | Zbl 1058.20014
[18] Mazurov V.D.: Recognition of the finite simple groups $S_4 (q)$ by their element orders. Algebra Logic 41 (2002), no. 2, 93–110. DOI 10.1023/A:1015356614025 | MR 1922988 | Zbl 1067.20016
[19] Mazurov V.D., Chen G.Y.: Recognizability of the finite simple groups $L_4(2^m)$ and $U\sb 4(2\sp m)$ by the spectrum. Algebra Logic 47 (2008), no. 1, 49–55. DOI 10.1007/s10469-008-0005-y | MR 2408572
[20] Moghaddamfar A.R.: A comparison of the order components in Frobenius and $2$-Frobenius groups with finite simple groups. Taiwanese J. Math. 13 (2009), no. 1, 67–89. DOI 10.11650/twjm/1500405273 | MR 2489308 | Zbl 1230.20013
[21] Moghaddamfar A.R.: Recognizability of finite groups by order and degree pattern. Proceedings of the International Conference on Algebra 2010, World Sci. Publ., Hackensack, NJ, 2012, pp. 422–433. MR 2905667 | Zbl 1264.20028
[22] Moghaddamfar A.R.: On alternating and symmetric groups which are quasi OD-characterizable. J. Algebra Appl., 16 (2017), no. 2, 1750065, 14 pp. DOI 10.1142/S0219498817500657
[23] Moghaddamfar A.R., Darafsheh M.R.: A family of finite simple groups which are $2$-recognizable by their elements order. Comm. Algebra 32 (2004), no. 11, 4507–4513. DOI 10.1081/AGB-200037717 | MR 2102462 | Zbl 1071.20019
[24] Moghaddamfar A.R., Rahbarian S.: More on the OD-characterizability of a finite group. Algebra Colloq. 18 (2011), 663–674. MR 2837003
[25] Moghaddamfar A.R., Rahbariyan S.: A quantitative characterization of some finite simple groups through order and degree pattern. Note Mat. 34 (2014), no. 2, 91–105. MR 3315986 | Zbl 1316.20024
[26] Moghaddamfar A.R., Rahbarian S.: OD-characterization of some projective special linear groups over the binary field and their automorphism groups. Comm. Algebra 43 (2015), no. 6, 2308–2334. DOI 10.1080/00927872.2014.891605 | MR 3344192
[27] Moghaddamfar A.R., Zokayi A.R.: Recognizing finite group through order and degree pattern. Algebra Colloq. 15 (2008), no. 3, 449–456. DOI 10.1142/S1005386708000424 | MR 2441479
[28] Moghaddamfar A.R., Zokayi A.R.: OD-characterization of alternating and symmetric groups of degree $16$ and $22$. Front. Math. China 4 (2009), 669–680. DOI 10.1007/s11464-009-0037-1 | MR 2563648
[29] Moghaddamfar A.R., Zokayi A.R.: OD-characterization of certain finite groups having connected prime graphs. Algebra Colloq. 17 (2010), no. 1, 121–130. DOI 10.1142/S1005386710000143 | MR 2589751 | Zbl 1191.20020
[30] Moghaddamfar A.R., Zokayi A.R., Darafsheh M.R.: A characterization of finite simple groups by the degrees of vertices of their prime graphs. Algebra Colloq. 12 (2005), no. 3, 431–442. DOI 10.1142/S1005386705000398 | MR 2144997 | Zbl 1072.20015
[31] Shao C., Shi W., Wang L., Zhang L.: OD-characterization of $\mathbb A_{16}$. Journal of Suzhou University (Natural Science Edition) 24 (2008), 7–10.
[32] Shao C., Shi W., Wang L., Zhang L.: OD-characterization of the simple group $L_3(9)$. Journal of Guangxi University (Natural Science Edition) 34 (2009), 120–122. Zbl 1212.20054
[33] Shi W., Zhang L.: OD-characterization of all simple groups whose orders are less than $10^8$. Front. Math. China 3 (2008), 461–474. DOI 10.1007/s11464-008-0026-9 | MR 2425165 | Zbl 1165.20010
[34] Suzuki M.: Group Theory I. Springer, Berlin-New York, 1982. MR 0648772 | Zbl 0472.20001
[35] Vasil'ev A.V., Gorshkov I.B.: On the recognition of finite simple groups with a connected prime graph. Sib. Math. J. 50 (2009), 233–238. DOI 10.1007/s11202-009-0027-2 | MR 2531755
[36] Williams J.S.: Prime graph components of finite groups. J. Algebra 69 (1981), no. 2, 487–513. DOI 10.1016/0021-8693(81)90218-0 | MR 0617092 | Zbl 0471.20013
[37] Yan Y., Chen G.Y.: OD-characterization of alternating and symmetric groups of degree $106$ and $112$. Proceedings of the International Conference on Algebra 2010, World Sci. Publ., Hackensack, NJ, 2012, pp. 690–696. MR 2905690 | Zbl 1263.20013
[38] Yan Y., Chen G.Y., Zhang L.C., Xu H.: Recognizing finite groups through order and degree patterns. Chin. Ann. Math. Ser. B 34 (2013), no. 5, 777–790. DOI 10.1007/s11401-013-0787-7 | MR 3079810
[39] Zavarnitsine A.V.: Exceptional action of the simple groups $ L_4 (q)$ in the defining characteristic. Sib. Elektron. Mat. Izv. 5 (2008), 68–74. MR 2586623 | Zbl 1289.20059
[40] Zavarnitsine A.V.: Finite simple groups with narrow prime spectrum. Sib. Elektron. Mat. Izv. 6 (2009), 1–12. MR 2586673 | Zbl 1289.20021
[41] Zhang L., Shi W.: OD-characterization of simple $K_4$-groups. Algebra Colloq. 16 (2009), 275–282. DOI 10.1142/S1005386709000273 | MR 2503250 | Zbl 1182.20013
[42] Zhang L., Shi W.: OD-characterization of almost simple groups related to $U\sb 6(2)$. Acta Math. Sci. Ser. B Engl. Ed. 31 (2011), no. 2, 441–450. MR 2817102
[43] Zhang L., Shi W.: OD-characterization of the projective special linear groups $L_2(q)$. Algebra Colloq. 19 (2012), no. 3, 509–524. MR 2999260 | Zbl 1257.20012
[44] Zinov'eva M.R., Kondrat'ev A.S.: An example of a double Frobenius group with order components as in the simple group $S_4 (3)$. Vladikavkaz. Mat. Zh. 10 (2008), no. 1, 35–36 (Russian). MR 2434651 | Zbl 1324.20008
[45] Zinov'eva M.R., Mazurov V.D.: On finite groups with disconnected prime graph. Proceedings of the Steklov Institute of Mathematics 283 (2013), no. 1, 139–145. MR 3476387 | Zbl 1307.20023
Partner of
EuDML logo