[1] Duchamp, I. M. Anderson and T.:
On the existence of global variational principles. Amer. J. Math., 102, 5, 1980, 781-868, ISSN 0002-9327. DOI 10.2307/2374195.
DOI 10.2307/2374195 |
MR 0590637
[2] Bocharov, A. V., Chetverikov, V. N., Duzhin, S. V., Khor'kova, N. G., Krasil'shchik, I. S., Samokhin, A. V., Torkhov, Yu. N., Verbovetsky, A. M., Vinogradov, A. M.:
Symmetries and conservation laws for differential equations of mathematical physics. Translations of Mathematical Monographs, 182, 1999, American Mathematical Society, Providence, RI, ISBN 0-8218-0958-X. Edited and with a preface by Krasil'shchik and Vinogradov, translated from 1997 Russian original by Verbovetsky and Krasil'shchik.
MR 1670044
[3] Dedecker, P.:
Calcul des variations, formes différentielles et champs géodésiques. Géométrie différentielle. Colloques Internationaux du Centre National de la Recherche Scientifique, Strasbourg, 1953, 17-34, Centre National de la Recherche Scientifique, Paris,
MR 0062964 |
Zbl 0052.32003
[4] Gel'fand, I. M., Dikiĭ, L. A.:
The calculus of jets and nonlinear Hamiltonian systems. Funkcional. Anal. i Priložen., 12, 2, 1978, 8-23, ISSN 0374-1990.
MR 0501129
[5] Giaquinta, M., Hildebrandt, S.:
Calculus of variations. I. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 310, 1996, Springer-Verlag, Berlin, ISBN 3-540-50625-X. The Lagrangian formalism.
MR 1385926
[6] Janet, M.: Leçons sur les Systèmes d'Équations aux Dérivées Partielles. 1929, Gauthier-Villars,
[7] Krupka, D.:
Of the structure of the Euler mapping. Arch. Math., 10, 1, 1974, 55-61, ISSN 0044-8753.
MR 0394755
[8] Krupka, D., Moreno, G., Urban, Z., Voln{á}, J.:
On a bicomplex induced by the variational sequence. Int. J. Geom. Methods Mod. Phys., 15, 5, 2015, 1550057. ISSN 0219-8878. DOI 10.1142/S0219887815500577.
DOI 10.1142/S0219887815500577 |
MR 3349926 |
Zbl 1322.58013
[9] Lánczos, C.:
The variational principles of mechanics. 4, 1970, University of Toronto Press, Toronto, Ont., Fourth Ed..
MR 0431821 |
Zbl 0257.70001
[10] Love, A. E. H.:
A treatise on the Mathematical Theory of Elasticity. 1944, Dover Publications, New York, Fourth Ed..
MR 0010851 |
Zbl 0063.03651
[11] Moreno, G.: Condizioni di trasversalitá nel calcolo secondario. 2007, PhD thesis, University of Naples ``Federico II'' (2007).
[12] Moreno, G.:
A C-spectral sequence associated with free boundary variational problems. Geometry, integrability and quantization, 2010, 146-156, Avangard Prima, Sofia,
MR 2757930
[14] Moreno, G., Stypa, M. E.:
Natural boundary conditions in geometric calculus of variations. Math. Slovaca, 65, 6, 2015, 1531-1556, ISSN 0139-9918. DOI 10.1515/ms-2015-0105.
DOI 10.1515/ms-2015-0105 |
MR 3458999
[15] Sardanashvily, G. A.:
Gauge theory in jet manifolds. 1993, Hadronic Press Inc., Palm Harbor, FL, ISBN 0-911767-60-6..
MR 1262598 |
Zbl 0811.58004
[18] Tsujishita, T.:
On variation bicomplexes associated to differential equations. Osaka J. Math., 19, 2, 1982, 311-363, ISSN 0030-6126.
MR 0667492 |
Zbl 0524.58041
[19] Tulczyjew, W. M.:
Sur la différentielle de Lagrange. C. R. Acad. Sci. Paris Sér. A, 280, 1975, 1295-1298,
MR 0377987 |
Zbl 0314.58018
[20] Brunt, B. van:
The calculus of variations. 2004, Springer-Verlag, New York, ISBN 0-387-40247-0.
MR 2004181
[21] Vinogradov, A. M.:
The C-spectral sequence, Lagrangian formalism, and conservation laws. I. The linear theory. J. Math. Anal. Appl., 100, 1, 1984, 1-40, ISSN 0022-247X.
DOI 10.1016/0022-247X(84)90071-4 |
MR 0739951
[22] Vinogradov, A. M.:
The C-spectral sequence, Lagrangian formalism, and conservation laws. II. The nonlinear theory. J. Math. Anal. Appl., 100, 1, 1984, 41-129, ISSN 0022-247X.
DOI 10.1016/0022-247X(84)90072-6 |
MR 0739952
[23] Vinogradov, A. M., Moreno, G.:
Domains in infinite jet spaces: the C-spectral sequence. Dokl. Akad. Nauk, 413, 2, 2007, 154-157, ISSN 0869-5652. DOI 10.1134/S1064562407020081.
DOI 10.1134/S1064562407020081 |
MR 2456137