Previous |  Up |  Next

Article

Keywords:
linear model; linear estimation; linear prediction; admissibility; admissibility among an affine set; locally best estimator
Summary:
The paper refers to the research on the characterization of admissible estimators initiated by Cohen [2]. In our paper it is proved that for linear models with finitely generated parameter space the limit of a sequence of the unique locally best linear estimators is admissible. This result is used to give a characterization of admissible linear estimators of fixed and random effects in a random linear model for spatially located sensors measuring intensity of a source of signals in discrete instants of time.
References:
[1] Baksalary, J. K., Markiewicz, A.: Admissible linear estimators in the general Gauss-Markov model. J. Statist. Plann. Inference 19 (1988), 349-359. DOI 10.1016/0378-3758(88)90042-0 | MR 0955399 | Zbl 0656.62076
[2] Cohen, A.: All admissible estimates of the mean vector. Ann. Math. Statist. 37 (1966), 458-463. DOI 10.1214/aoms/1177699528 | MR 0189164
[3] Gnot, S., Kleffe, J.: Quadratic estimation in mixed linear models with two variance components. J. Statist. Plann. Inference 8 (1983), 267-279. DOI 10.1016/0378-3758(83)90045-9 | MR 0729245 | Zbl 0561.62064
[4] Gnot, S., Rafajłowicz, E., Urbańska-Motyka, A.: Statistical inference in linear model for spatially located sensors and random inputs. Ann. Inst. Statist Math. 53 (2001), 370-379. DOI 10.1023/a:1012426923971 | MR 1841142
[5] Goldberger, A. S.: Best linear unbiased prediction in the generalized linear regression model. J. Amer. Statist. Assoc. 57 (1962), 369-375. DOI 10.1080/01621459.1962.10480665 | MR 0143295 | Zbl 0124.35502
[6] Gro{\ss}, J., Markiewicz, A.: Characterization of admissible linear estimators in the linear model. Linear Algebra Appl. 388 (2004), 239-248. DOI 10.1016/s0024-3795(03)00459-2 | MR 2077862
[7] Harville, D. A.: Extension of the Gauss-Markov theorem to include the estimation of random effects. Ann. Statist. 2 (1976), 384-395. DOI 10.1214/aos/1176343414 | MR 0398007 | Zbl 0323.62043
[8] Henderson, C. R.: Estimation of genetic parameters (abstract). Ann. Math. Statist. 21 (1950), 309-310.
[9] Henderson, C. R.: Selection index and expected genetic advance. In: Statistical Genetics and Plant Breeding (W. D. Hanson and H. F. Robinson, eds.), NAS-NRC 982, Washington 1963, pp. 141-163.
[10] Jiang, J.: A derivation of BLUP-Best linear unbiased predictor. Statist. Probab. Lett. 32 (1997), 321-324. DOI 10.1016/s0167-7152(96)00089-2 | MR 1440842 | Zbl 0886.62066
[11] Klonecki, W., Zontek, S.: On the structure of admissible linear estimators. J. Multivariate Anal. 24 (1988), 11-30. DOI 10.1016/0047-259x(88)90098-x | MR 0925126 | Zbl 0664.62008
[12] LaMotte, L. R.: Admissibility in linear estimation. Ann. Statist. 10 (1982), 245-255. DOI 10.1214/aos/1176345707 | MR 0642736 | Zbl 0485.62070
[13] LaMotte, L. R.: On limits of uniquely best linear estimators. Metrika 45 (1997), 197-211. DOI 10.1007/bf02717103 | MR 1452063
[14] Liu, X. Q., Rong, J. Y., Liu, X. Y.: Best linear unbiased prediction for linear combinations in general mixed linear models. J. Multivariate Anal. 99 (2008), 1503-1517. DOI 10.1016/j.jmva.2008.01.004 | MR 2444809 | Zbl 1144.62047
[15] Olsen, A., Seely, J., Birkes, D.: Invariant quadratic unbiased estimation for two variance components. Ann. Statist. 4 (1976), 878-890. DOI 10.1214/aos/1176343586 | MR 0418345 | Zbl 0344.62060
[16] Rao, C. R.: Estimation of parameters in a linear model. Ann. Statist. 4 (1976), 1023-1037. DOI 10.1214/aos/1176343639 | MR 0420979 | Zbl 0421.62047
[17] Rao, C. R.: Estimation in linear models with mixed effects: a unified theory. In: Proc. Second International Tampere Conference in Statistics (T. Pukkila and S. Puntanen, eds.), Dept. of Mathematical Sciences, Univ. of Tampere, Tampere 1987, pp. 73-98.
[18] Robinson, G. K.: That BLUP is a good thing-the estimation of random effects. Statist. Sci. 6 (1991), 15-51. DOI 10.1214/ss/1177011933 | MR 1108815 | Zbl 0955.62500
[19] Shiqing, W., Ying, M., Zhijun, F.: Integral expression form of admissible linear estimators of effects in linear mixed models. In: Proc. 2010 International Conference on Computing, Control and Industrial Engineering, IEEE, Wuhan 2010, pp. 56-60. DOI 10.1109/ccie.2010.133
[20] Stępniak, C.: On admissible estimators in a linear model. Biometrical J. 26 (1984), 815-816. DOI 10.1002/bimj.4710260725 | MR 0775200 | Zbl 0565.62042
[21] Stępniak, C.: A complete class for linear estimation in a general linear model. Ann. Inst. Statist. Math. A 39 (1987), 563-573. DOI 10.1007/bf02491490 | MR 0930530 | Zbl 0691.62010
[22] Stępniak, C.: Admissible invariant esimators in a linear model. Kybernetika 50 (2014), 310-321. DOI 10.14736/kyb-2014-3-0310 | MR 3245533
[23] Synówka-Bejenka, E., Zontek, S.: A characterization of admissible linear estimators of fixed and random effects in linear models. Metrika 68 (2008), 157-172. DOI 10.1007/s00184-007-0149-0 | MR 2434311
[24] Tian, Y.: A new derivation of BLUPs under random-effects model. Metrika 78 (2015), 905-918. DOI 10.1007/s00184-015-0533-0 | MR 3407588 | Zbl 1329.62264
[25] Zontek, S.: On characterization of linear admissible estimators: an extension of a result due to C. R. Rao. J. Multivariate Anal. 23 (1987), 1-12. DOI 10.1016/0047-259x(87)90174-6 | MR 0911790 | Zbl 0647.62062
[26] Zontek, S.: Admissibility of limits of the unique locally best linear estimators with application to variance components models. Probab. Math. Statist. 9 (1988), 29-44. MR 0985523 | Zbl 0674.62008
Partner of
EuDML logo