[2] Akian, M., Gaubert, S., Lakhoua, A.:
The max-plus finite element method for solving deterministic optimal control problems: basic properties and convergence analysis. SIAM J. Control Optim. 47 (2008), 817-848.
DOI 10.1137/060655286 |
MR 2385864 |
Zbl 1157.49034
[3] Baccelli, F. L., Cohen, G., Olsder, G. J., Quadrat, J.-P.:
Synchronization and Linearity. Wiley, New York 1992.
MR 1204266 |
Zbl 0824.93003
[9] Gaubert, S., Qu, Z., Sridharan, S.: Bundle-based pruning in the max-plus curse of dimensionality free method. In: Proc. 21st Int. Symp. Math. Theory of Networks and Systems 2014.
[10] Heidergott, B., Olsder, G. J., Woude, J. van der:
Max-Plus at Work: Modeling and Analysis of Synchronized Systems. Princeton Univ. Press 2006.
DOI 10.1515/9781400865239 |
MR 2188299
[16] McEneaney, W. M.:
Idempotent method for deception games. In: Proc. 2011 Amer. Control Conf., pp. 4051-4056.
DOI 10.1109/acc.2011.5990870
[17] McEneaney, W. M., Desir, A.: Games of network disruption and idempotent algorithms. In: Proc. European Control Conf. 2013, pp. 702-709.
[18] McEneaney, W. M.:
Idempotent algorithms for discrete-time stochastic control through distributed dynamic programming. In: Proc. IEEE CDC 2009, pp. 1569-1574.
DOI 10.1109/cdc.2009.5400306
[19] McEneaney, W. M., Charalambous, C. D.: Large deviations theory, induced log-plus and max-plus measures and their applications. In: Proc. Math. Theory Networks and Sys. 2000.
[22] Qu, Z.:
A max-plus based randomized algorithm for solving a class of HJB PDEs. In: Proc. 53rd IEEE Conf. on Dec. and Control 2014.
DOI 10.1109/cdc.2014.7039624