[1] Aktaş, R.:
A new multivariable extension of Humbert matrix polynomials. AIP Publishing LLC Rhodes, Greece AIP Conference Proceedings 1558: Proc. Int. Conf. on Numerical Analysis and Applied Mathematics (2013), 1128-1131 T. Simos et al. \DOI 10.1063/1.4825706.
DOI 10.1063/1.4825706
[2] Aktaş, R.: A note on multivariable Humbert matrix polynomials. Gazi Univ. J. Sci. 27 (2014), 747-754.
[3] Aktaş, R., Çekim, B., Çevik, A.:
Extended Jacobi matrix polynomials. Util. Math. 92 (2013), 47-64.
MR 3136666
[5] Altın, A., Çekim, B.:
Generating matrix functions for Chebyshev matrix polynomials of the second kind. Hacet. J. Math. Stat. 41 (2012), 25-32.
MR 2976908 |
Zbl 1259.33014
[6] Altın, A., Çekim, B.:
Some properties associated with Hermite matrix polynomials. Util. Math. 88 (2012), 171-181.
MR 2975830 |
Zbl 1262.15023
[7] Altın, A., Çekim, B.:
Some miscellaneous properties for Gegenbauer matrix polynomials. Util. Math. 92 (2013), 377-387.
MR 3136694 |
Zbl 1293.33007
[8] Çekim, B., Altın, A., Aktaş, R.:
Some relations satisfied by orthogonal matrix polynomials. Hacet. J. Math. Stat. 40 (2011), 241-253.
MR 2839191 |
Zbl 1229.33012
[11] Defez, E., Jódar, L.:
Chebyshev matrix polynomials and second order matrix differential equations. Util. Math. 61 (2002), 107-123.
MR 1899321 |
Zbl 0998.15034
[13] Dunford, N., Schwartz, J. T.:
Linear Operators. Part I, General Theory. Pure and Applied Mathematics 7 A Wiley-Interscience Publishers, John Wiley & Sons, New York (1958).
MR 1009162
[14] James, A. T.:
Special functions of matrix and single argument in statistics. Theory and Application of Special Functions, Proc. Advanced Sem., Math. Res. Center, Madison, Wis. R. A. Askey Academic Press, New York (1975), 497-520.
MR 0402145 |
Zbl 0326.33010
[15] Jódar, L., Company, R.:
Hermite matrix polynomials and second order matrix differential equations. Approximation Theory Appl. 12 (1996), 20-30.
MR 1465570
[16] Jódar, L., Company, R., Ponsoda, E.:
Orthogonal matrix polynomials and systems of second order differential equations. Differ. Equ. Dyn. Syst. 3 (1995), 269-288.
MR 1386749 |
Zbl 0892.33004
[19] Jódar, L., Defez, E.:
On Hermite matrix polynomials and Hermite matrix functions. Approximation Theory Appl. 14 (1998), 36-48.
MR 1651470
[21] Kargin, L., Kurt, V.:
Some relations on Hermite matrix polynomials. Math. Comput. Appl. 18 (2013), 323-329.
MR 3113139
[24] Metwally, M. S., Mohamed, M. T., Shehata, A.:
On Hermite-Hermite matrix polynomials. Math. Bohem. 133 (2008), 421-434.
MR 2472489 |
Zbl 1199.15079
[25] Sastre, J., Jódar, L.:
On Laguerre matrix polynomial series. Util. Math. 71 (2006), 109-130.
MR 2278826 |
Zbl 1106.33011
[26] Shehata, A.:
On Tricomi and Hermite-Tricomi matrix functions of complex variable. Commun. Math. Appl. 2 (2011), 97-109.
MR 3000027 |
Zbl 1266.33012
[27] Shehata, A.:
A new extension of Gegenbauer matrix polynomials and their properties. Bull. Int. Math. Virtual Inst. 2 (2012), 29-42.
MR 3149829
[28] Shehata, A.:
On pseudo Legendre matrix polynomials. Int. J. Math. Sci. Eng. Appl. 6 (2012), 251-258.
MR 3057762
[29] Shehata, A.:
On Rainville's matrix polynomials. Sylwan J. 158 (2014), 158-178.
MR 3248615
[31] Shehata, A.:
New kinds of hypergeometric matrix functions. British Journal of Mathematics and Computer Science 5 (2015), 92-102 \DOI 10.9734/BJMCS/2015/11492.
DOI 10.9734/BJMCS/2015/11492
[32] Shehata, A.: On a new family of the extended generalized Bessel-type matrix polynomials. Mitteilungen Klosterneuburg J. 65 (2015), 100-121.
[33] Shehata, A.:
On modified Laguerre matrix polynomials. J. Nat. Sci. Math. 8 (2015), 153-166.
MR 3404349
[35] Upadhyaya, L. M., Shehata, A.:
On Legendre matrix polynomials and its applications. Int. Trans. Math. Sci. Comput. 4 (2011), 291-310.
MR 3057762
[37] Varma, S., Çekim, B., Yeşildal, F. Taşdelen:
On Konhauser matrix polynomials. Ars Comb. 100 (2011), 193-204.
MR 2798172