Previous |  Up |  Next

Article

Title: On Lie algebras of generators of infinitesimal symmetries of almost-cosymplectic-contact structures (English)
Author: Janyška, Josef
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 52
Issue: 5
Year: 2016
Pages: 325-339
Summary lang: English
.
Category: math
.
Summary: We study Lie algebras of generators of infinitesimal symmetries of almost-cosymplectic-contact structures of odd dimensional manifolds. The almost-cosymplectic-contact structure admits on the sheaf of pairs of 1-forms and functions the structure of a Lie algebra. We describe Lie subalgebras in this Lie algebra given by pairs generating infinitesimal symmetries of basic tensor fields given by the almost-cosymplectic-contact structure. (English)
Keyword: almost-cosymplectic-contact structure
Keyword: almost-coPoisson-Jacobi structure
Keyword: infinitesimal symmetry
Keyword: Lie algebra
MSC: 53C15
idZBL: Zbl 06674908
idMR: MR3610867
DOI: 10.5817/AM2016-5-325
.
Date available: 2016-12-20T21:58:45Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145939
.
Reference: [1] de Leon, M., Tuynman, G.M: A universal model for cosymplectic manifolds.J. Geom. Phys. 20 (1996), 77–86. Zbl 0861.53026, MR 1407405, 10.1016/0393-0440(96)00047-2
Reference: [2] Janyška, J.: Remarks on local Lie algebras of pairs of functions.preprint 2016, arXiv: 1610.08706v1.
Reference: [3] Janyška, J.: Relations between constants of motion and conserved functions.Arch. Math.(Brno) 51 (2015), 297–313. DOI: http://dx.doi.org/10.5817/AM2015-5-297 Zbl 1374.70055, MR 3449110, 10.5817/AM2015-5-297
Reference: [4] Janyška, J., Modugno, M.: Geometric Structures of the Classical General Relativistic Phase Space.Int. J. Geom. Methods Mod. Phys. 5 (2008), 699–754. Zbl 1160.53008, MR 2445392, 10.1142/S021988780800303X
Reference: [5] Janyška, J., Modugno, M.: Generalized geometrical structures of odd dimensional manifolds.J. Math. Pures Appl. (9) 91 (2009), 211–232. Zbl 1163.53051, MR 2498755, 10.1016/j.matpur.2008.09.007
Reference: [6] Janyška, J., Vitolo, R.: On the characterization of infinitesimal symmetries of the relativistic phase space.J. Phys. A: Math. Theor. 45 (2012), 485205. Zbl 1339.70036, MR 2998421, 10.1088/1751-8113/45/48/485205
Reference: [7] Kirillov, A.A.: Local Lie algebras.Russian Math. Surveys 31 (1976), 55–76. Zbl 0357.58003, MR 0438390, 10.1070/RM1976v031n04ABEH001556
Reference: [8] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry.Springer, 1993. MR 1202431
Reference: [9] Lichnerowicz, A.: Les variétés de Jacobi et leurs algèbres de Lie associées.J. Math. Pures Appl. (9) 57 (1978), 453–488. Zbl 0407.53025, MR 0524629
Reference: [10] Mackenzie, K.: General Theory of Lie Groupoids and Lie Algebroids.London Mathematical Society, Lecture Note Series, vol. 213, Cambridge University Press, 2005. Zbl 1078.58011, MR 2157566
Reference: [11] Vaisman, I.: Lectures on the Geometry of Poisson Manifolds.Birkhäuser Verlag, Basel–Boston–Berlin, 1994. Zbl 0810.53019, MR 1269545
.

Files

Files Size Format View
ArchMathRetro_052-2016-5_6.pdf 576.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo