Title:
|
On Lie algebras of generators of infinitesimal symmetries of almost-cosymplectic-contact structures (English) |
Author:
|
Janyška, Josef |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
52 |
Issue:
|
5 |
Year:
|
2016 |
Pages:
|
325-339 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study Lie algebras of generators of infinitesimal symmetries of almost-cosymplectic-contact structures of odd dimensional manifolds. The almost-cosymplectic-contact structure admits on the sheaf of pairs of 1-forms and functions the structure of a Lie algebra. We describe Lie subalgebras in this Lie algebra given by pairs generating infinitesimal symmetries of basic tensor fields given by the almost-cosymplectic-contact structure. (English) |
Keyword:
|
almost-cosymplectic-contact structure |
Keyword:
|
almost-coPoisson-Jacobi structure |
Keyword:
|
infinitesimal symmetry |
Keyword:
|
Lie algebra |
MSC:
|
53C15 |
idZBL:
|
Zbl 06674908 |
idMR:
|
MR3610867 |
DOI:
|
10.5817/AM2016-5-325 |
. |
Date available:
|
2016-12-20T21:58:45Z |
Last updated:
|
2018-01-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/145939 |
. |
Reference:
|
[1] de Leon, M., Tuynman, G.M: A universal model for cosymplectic manifolds.J. Geom. Phys. 20 (1996), 77–86. Zbl 0861.53026, MR 1407405, 10.1016/0393-0440(96)00047-2 |
Reference:
|
[2] Janyška, J.: Remarks on local Lie algebras of pairs of functions.preprint 2016, arXiv: 1610.08706v1. |
Reference:
|
[3] Janyška, J.: Relations between constants of motion and conserved functions.Arch. Math.(Brno) 51 (2015), 297–313. DOI: http://dx.doi.org/10.5817/AM2015-5-297 Zbl 1374.70055, MR 3449110, 10.5817/AM2015-5-297 |
Reference:
|
[4] Janyška, J., Modugno, M.: Geometric Structures of the Classical General Relativistic Phase Space.Int. J. Geom. Methods Mod. Phys. 5 (2008), 699–754. Zbl 1160.53008, MR 2445392, 10.1142/S021988780800303X |
Reference:
|
[5] Janyška, J., Modugno, M.: Generalized geometrical structures of odd dimensional manifolds.J. Math. Pures Appl. (9) 91 (2009), 211–232. Zbl 1163.53051, MR 2498755, 10.1016/j.matpur.2008.09.007 |
Reference:
|
[6] Janyška, J., Vitolo, R.: On the characterization of infinitesimal symmetries of the relativistic phase space.J. Phys. A: Math. Theor. 45 (2012), 485205. Zbl 1339.70036, MR 2998421, 10.1088/1751-8113/45/48/485205 |
Reference:
|
[7] Kirillov, A.A.: Local Lie algebras.Russian Math. Surveys 31 (1976), 55–76. Zbl 0357.58003, MR 0438390, 10.1070/RM1976v031n04ABEH001556 |
Reference:
|
[8] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry.Springer, 1993. MR 1202431 |
Reference:
|
[9] Lichnerowicz, A.: Les variétés de Jacobi et leurs algèbres de Lie associées.J. Math. Pures Appl. (9) 57 (1978), 453–488. Zbl 0407.53025, MR 0524629 |
Reference:
|
[10] Mackenzie, K.: General Theory of Lie Groupoids and Lie Algebroids.London Mathematical Society, Lecture Note Series, vol. 213, Cambridge University Press, 2005. Zbl 1078.58011, MR 2157566 |
Reference:
|
[11] Vaisman, I.: Lectures on the Geometry of Poisson Manifolds.Birkhäuser Verlag, Basel–Boston–Berlin, 1994. Zbl 0810.53019, MR 1269545 |
. |