[2] De Bie, H., Holíková, M., Somberg, P.: Basic aspects of symplectic Clifford analysis for the symplectic Dirac operator. arXiv:1511.04189, 2015.
[6] Kostant, B.:
Symplectic spinors. Symposia Mathematica, Progress in Mathematics, vol. XIV, Academic Press, London, 1974, pp. 139–152.
MR 0400304 |
Zbl 0321.58015
[7] Kostant, B.:
Verma modules and the existence of quasi-invariant differential operators, Non-Commutative Harmonic Analysis. Lecture Notes in Math., vol. 466, Springer, Berlin, 1975, pp. 101–128.
MR 0396853
[8] Křižka, L., Somberg, P.:
Algebraic analysis of scalar generalized Verma modules of Heisenberg parabolic type I.: $A_n$-series. arXiv:1502.07095, to appear in Transformation Groups, 2015.
MR 3449111
[9] Křižka, L., Somberg, P.: Algebraic analysis on scalar generalized Verma modules of Heisenberg parabolic type II.: $C_n, D_n$-series. (in preparation).
[10] Ørsted, B.:
Generalized gradients and Poisson transforms. Global analysis and harmonic analysis, Sémin. Congr., vol. 4, Soc. Math. France, Paris, 2000, pp. 235–249.
MR 1822363 |
Zbl 0989.22018
[11] Somberg, P., Šilhan, J.: Higher symmetries of the symplectic Dirac operator. (in preparation).
[12] Torasso, P.:
Quantification géométrique, opérateurs d’entrelacement et représentations unitaires de ${\widetilde{SL}}_3(\mathbb{R})$. Acta Math. 150 (1) (1983), 153–242.
DOI 10.1007/BF02392971 |
MR 0709141
[13] Wolf, J.A.:
Unitary representations of maximal parabolic subgroups of the classical groups. Mem. Amer. Math. Soc., vol. 8, American Mathematical Society, Providence, 1976.
MR 0444847 |
Zbl 0344.22016