Previous |  Up |  Next

Article

Keywords:
stochastic Riccati equation; Malliavin calculus; density estimate
Summary:
Stochastic Riccati equation is a backward stochastic differential equation with singular generator which arises naturally in the study of stochastic linear-quadratic optimal control problems. In this paper, we obtain Gaussian density estimates for the solutions to this equation.
References:
[1] Aboura, O., Bourguin, S.: Density estimates for solutions to one dimensional backward SDE's. Potential Anal. 38 (2013), 573-587. DOI 10.1007/s11118-012-9287-8 | MR 3015365 | Zbl 1273.60066
[2] Antonelli, F., Kohatsu-Higa, A.: Densities of one-dimensional backward SDEs. Potential Anal. 22 (2005), 263-287. DOI 10.1007/s11118-004-1324-9 | MR 2134722 | Zbl 1082.60047
[3] Cvitani{ć}, J., Zhang, J.: Contract Theory in Continuous-Time Models. Springer Finance Springer, Heidelberg (2013). MR 2963805 | Zbl 1319.91007
[4] Reis, G. Dos: On Some Properties of Solutions of Quadratic Growth BSDE and Applications in Finance and Insurance. PhD thesis, Humboldt University in Berlin (2010).
[5] Kazamaki, N.: Continuous Exponential Martingales and BMO. Lecture Notes in Mathematics 1579 Springer, Berlin (1994). MR 1299529 | Zbl 0806.60033
[6] Lim, A. E. B., Zhou, X. Y.: Mean-variance portfolio selection with random parameters in a complete market. Math. Oper. Res. 27 (2002), 101-120. DOI 10.1287/moor.27.1.101.337 | MR 1886222 | Zbl 1082.91521
[7] Mastrolia, T., Possamaï, D., Réveillac, A.: Density analysis of BSDEs. Ann. Probab. 44 (2016), 2817-2857. DOI 10.1214/15-AOP1035 | MR 3531681
[8] Nguyen, T. D., Privault, N., Torrisi, G. L.: Gaussian estimates for the solutions of some one-dimensional stochastic equations. Potential Anal. 43 (2015), 289-311. DOI 10.1007/s11118-015-9472-7 | MR 3374113 | Zbl 1321.60127
[9] Nourdin, I., Viens, F. G.: Density formula and concentration inequalities with Malliavin calculus. Electron. J. Probab. 14 (2009), 2287-2309. DOI 10.1214/EJP.v14-707 | MR 2556018 | Zbl 1192.60066
[10] Nualart, D.: The Malliavin Calculus and Related Topics. Probability and Its Applications Springer, Berlin (2006). MR 2200233 | Zbl 1099.60003
[11] Privault, N.: Stochastic Analysis in Discrete and Continuous Settings with Normal Martingales. Lecture Notes in Mathematics 1982 Springer, Berlin (2009). MR 2531026 | Zbl 1185.60005
[12] Shen, Y.: Mean-variance portfolio selection in a complete market with unbounded random coefficients. Automatica J. IFAC 55 (2015), 165-175. DOI 10.1016/j.automatica.2015.03.009 | MR 3336665
[13] Yu, Z.: Continuous-time mean-variance portfolio selection with random horizon. Appl. Math. Optim. 68 (2013), 333-359. DOI 10.1007/s00245-013-9209-1 | MR 3131499 | Zbl 1288.91181
Partner of
EuDML logo