Title:
|
Comaximal graph of $C(X)$ (English) |
Author:
|
Badie, Mehdi |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
57 |
Issue:
|
3 |
Year:
|
2016 |
Pages:
|
353-364 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this article we study the comaximal graph $\Gamma'_{_2}C(X)$ of the ring $C(X)$. We have tried to associate the graph properties of $\Gamma'_{_2}C(X)$, the ring properties of $C(X)$ and the topological properties of $X$. Radius, girth, dominating number and clique number of the $\Gamma'_{_2}C(X)$ are investigated. We have shown that $2\leq \operatorname{Rad}\Gamma'_{_2}C(X) \leq 3$ and if $|X|> 2$ then $\mathrm{girth } \Gamma'_{_2}C(X)= 3$. We give some topological properties of $X$ equivalent to graph properties of $\Gamma'_{_2}C(X)$. Finally we have proved that $X$ is an almost $P$-space which does not have isolated points if and only if $C(X)$ is an almost regular ring which does not have any principal maximal ideals if and only if $\operatorname{Rad}\Gamma'_{_2}C(X)= 3$. (English) |
Keyword:
|
rings of continuous functions |
Keyword:
|
comaximal graph |
Keyword:
|
radius |
Keyword:
|
girth |
Keyword:
|
dominating number |
Keyword:
|
clique number |
Keyword:
|
zero cellularity |
Keyword:
|
$P$-space |
Keyword:
|
almost $P$-space |
Keyword:
|
connected space |
Keyword:
|
regular ring |
MSC:
|
54C40 |
idZBL:
|
Zbl 06674886 |
idMR:
|
MR3554516 |
DOI:
|
10.14712/1213-7243.2015.178 |
. |
Date available:
|
2016-09-22T15:27:57Z |
Last updated:
|
2018-10-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/145840 |
. |
Reference:
|
[1] Afkhami M., Barati Z., Khashyarmanesh K.: When the comaximal and zero-divisor graphs are ring graphs and outerplanar.Rocky Mountain J. Math. 44 (2014), no. 6, 1745–1761. MR 3310946, 10.1216/RMJ-2014-44-6-1745 |
Reference:
|
[2] Afkhami M., Khashyarmanesh K.: On the cozero-divisor graphs and comaximal graphs of commutative rings.J. Algebra Appl. 12 (2013), no. 3, 1250173, 9pp. Zbl 1262.05075, MR 3007910, 10.1142/S0219498812501733 |
Reference:
|
[3] Akbari S., Habibi M., Majidinya A., Manaviyat R.: A note on comaximal graph of non-commutative rings.Algebr. Represent. Theory 16 (2013), no. 2, 303–307. Zbl 1263.05042, MR 3035995, 10.1007/s10468-011-9309-z |
Reference:
|
[4] Akbari S., Maimani H.R., Yassemi S.: When a zero-divisor graph is planar or a complete r-partite graph.J. Algebra 270 (2003), no. 1, 169–180. Zbl 1032.13014, MR 2016655, 10.1016/S0021-8693(03)00370-3 |
Reference:
|
[5] Amini A., Amini B., Momtahan E., Shirdareh Haghighi M.H.: On a graph of ideals.Acta Math. Hungar. 134 (2011), no. 3, 369–384. Zbl 1299.05153, MR 2886213, 10.1007/s10474-011-0121-3 |
Reference:
|
[6] Anderson D.F., Mulay S.B.: On the diameter and girth of a zero-divisor graph.J. Pure Appl. Algebra 210 (2007), no. 2, 543–550. Zbl 1119.13005, MR 2320017, 10.1016/j.jpaa.2006.10.007 |
Reference:
|
[7] Anderson D.D., Naseer M.: Beck's coloring of a commutative ring.J. Algebra 159 (1993), no. 2, 500–514. Zbl 0798.05067, MR 1231228, 10.1006/jabr.1993.1171 |
Reference:
|
[8] Anderson D.F., Badawi A.: On the zero-divisor graph of a ring.Comm. Algebra 36 (2008), no. 8, 3073–3092. Zbl 1152.13001, MR 2440301 |
Reference:
|
[9] Anderson D.F., Levy R., Shapiro J.: Zero-divisor graphs, von Neumann regular rings, and Boolean algebras.J. Pure Appl. Algebra 180 (2003), no. 3, 221–241. Zbl 1076.13001, MR 1966657, 10.1016/S0022-4049(02)00250-5 |
Reference:
|
[10] Anderson D.F., Livingston P.S.: The zero-divisor graph of a commutative ring.J. Algebra 217 (1999), no. 2, 434–447. Zbl 1035.13004, MR 1700509, 10.1006/jabr.1998.7840 |
Reference:
|
[11] Atiyah M.F., Macdonald I.G.: Introduction to Commutative Algebra.Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. Zbl 0238.13001, MR 0242802 |
Reference:
|
[12] Azarpanah F., Motamedi M.: Zero-divisor graph of $C(X)$.Acta Math. Hungar. 108 (2005), no. 1–2, 25–36. Zbl 1092.54007, MR 2155237, 10.1007/s10474-005-0205-z |
Reference:
|
[13] Beck I.: Coloring of commutative rings.J. Algebra 116 (1988), no. 1, 208–226. Zbl 0654.13001, MR 0944156, 10.1016/0021-8693(88)90202-5 |
Reference:
|
[14] Biggs N.: Algebraic Graph Theory.Cambridge University Press, Cambridge, 1993. Zbl 0797.05032, MR 1271140 |
Reference:
|
[15] Bondy J.A., Murty U.S.R.: Graph Theory with Application.The Macmillan Press, New York, 1976. MR 0411988 |
Reference:
|
[16] Dheena P., Elavarasan B.: On comaximal graphs of near-rings.Kyungpook Math. J. 49 (2009), no. 2, 283–288. Zbl 1184.16048, MR 2554886, 10.5666/KMJ.2009.49.2.283 |
Reference:
|
[17] Engelking R.: General Topology.Heldermann-Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[18] Gillman L., Jerison M.: Rings of Continuous Functions.Transactions of the New York Academy of Sciences 27 (1964), no. 1 Series II, 5–6. Zbl 0327.46040, MR 0116199, 10.1111/j.2164-0947.1964.tb03479.x |
Reference:
|
[19] Jinnah M.I., Mathew Sh.C.: When is the comaximal graph split?.Comm. Algebra 40 (2012), no. 7, 2400–2404. Zbl 1247.13007, MR 2948834, 10.1080/00927872.2011.591861 |
Reference:
|
[20] Levy R., Shapiro J.: The zero-divisor graph of von Neumann regular rings.Comm. Algebra 30 (2002), no. 2, 745–750. Zbl 1055.13007, MR 1883021, 10.1081/AGB-120013178 |
Reference:
|
[21] Maimani H.R., Salimi M., Sattari A., Yassemi S.: Comaximal graph of commutative rings.J. Algebra 319 (2008), no. 4, 1801–1808. Zbl 1141.13008, MR 2383067, 10.1016/j.jalgebra.2007.02.003 |
Reference:
|
[22] Maimani H.R., Pournaki M.R., Tehranian A., Yassemi S.: Graphs attached to rings revisited.Arab. J. Sci. Eng. 36 (2011), no. 6, 997–1011. MR 2845527, 10.1007/s13369-011-0096-y |
Reference:
|
[23] Mehdi-Nezhad E., Rahimi A.M.: Dominating sets of the comaximal and ideal-based zero-divisor graphs of commutative rings.Quaest. Math. 38 (2015), 1–17. MR 3420663, 10.2989/16073606.2014.981713 |
Reference:
|
[24] Moconja S.M., Petrović Z.: On the structure of comaximal graphs of commutative rings with identity.Bull. Aust. Math. Soc. 83 (2011), no. 1, 11–21. Zbl 1222.13002, MR 2765410, 10.1017/S0004972710001875 |
Reference:
|
[25] Mulay Sh.B.: Cycles and symmetries of zero-divisors.Comm. Algebra 30 (2002), no. 7, 3533–3558. Zbl 1087.13500, MR 1915011, 10.1081/AGB-120004502 |
Reference:
|
[26] Petrovic Z.Z., Moconja S.M.: On graphs associated to rings.Novi Sad J. Math. 38 (2008), no. 3, 33–38. Zbl 1224.13001, MR 2598647 |
Reference:
|
[27] Sharma P.K., Bhatwadekar S.M.: A note on graphical representation of rings.J. Algebra 176 (1995), no. 1, 124–127. Zbl 0838.05051, MR 1345297, 10.1006/jabr.1995.1236 |
Reference:
|
[28] Wang H.-J.: Co-maximal graph of non-commutative rings.Linear Algebra Appl. 430 (2009), no. 2, 633–641. Zbl 1151.05019, MR 2469317, 10.1016/j.laa.2008.08.026 |
Reference:
|
[29] Willard S.: General Topology.Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970. Zbl 1052.54001, MR 0264581 |
Reference:
|
[30] Ye M., Wu T., Liu Q., Yu H.: Implements of graph blow-up in co-maximal ideal graphs.Comm. Algebra 42 (2014), no. 6, 2476–2483. MR 3169718, 10.1080/00927872.2012.762924 |
. |