[3] Kainz, G., Michor, P.W.:
Natural transformations in differential geometry. Czechoslovak Math. J. 37 (1987), 584–607.
MR 0913992 |
Zbl 0654.58001
[4] Kolář, I.:
Covariant approach to natural transformations of Weil bundles. Comment. Math. Univ. Carolin. 27 (1986), 723–729.
MR 0874666
[7] Kolář, I., Slovák, J., Michor, P.W.:
Natural operations in differential geometry. Springer Verlag Berlin, Heidelberg, 1993.
MR 1202431 |
Zbl 0782.53013
[8] Luciano, O.O.: Categories of multiplicative functors and Morimoto’s conjecture. Institut Fourier, Laboratoire de Mathématiques, Grenoble (1986), Preprint No. 46.
[9] Mackenzie, K.C.H.:
General theory of Liegroupoids and Lie algebroids. London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 2005.
MR 2157566
[11] Mikulski, W.M., Kures, M.:
Liftings of linear vector fields to product preserving gauge bundle functors on vector bundles. Lobachevskii Journal of Mathematics 12 (2003), 51–61.
MR 1974543 |
Zbl 1026.58003
[12] Ntyam, A., Kamga, J. Wouafo:
New versions of curvature and torsion formulas for the complete lifting of a linear connection to Weil bundles. Ann. Pol. Math. 82 (3) (2003), 133–140.
DOI 10.4064/ap82-3-4 |
MR 2040808
[13] Ntyam, A., Mba, A.:
On natural vector bundle morphisms $T^A \circ \otimes _s^q \rightarrow \otimes _s^q \circ T^A$ over ${\operatorname{id}}_{T^{A}} $. Ann. Pol. Math. 96 (3) (2009), 295–301.
MR 2534175
[14] Ntyam, A., Wankap, G.F., Ndombol, Bitjong:
On lifts of some projectable vector fields associated to a product preserving gaugebundle functor on vector bundles. Arch. Math. (Brno) 50 (3) (2014), 161–169.
DOI 10.5817/AM2014-3-161 |
MR 3263658
[15] Slovák, J.:
Prolongations of connections and sprays with respect to Weil functors. Proceedings of the 14th winter school on abstract analysis (Srní, 1986), Rend. Circ. Mat. Palermo (2) Suppl. No. 14 (1987), 143–155, 1987.
MR 0920852 |
Zbl 0644.53027
[16] Weil, A.:
Théorie des points proches sur les variétés différentiables. Topologie et Géométrie Différentielle, Colloque du CNRS, Strasbourg (CNRS, Paris, 1953) (1953), 97–110.
Zbl 0053.24903