[1] DeTurck, D., Koiso, N.:
Uniqueness and non-existence of metrics with prescribed Ricci curvature. Annales de l’Institut Henri Poincare (C) Analyse non lineaire 1, 5 (1984), 351–359.
MR 0779873 |
Zbl 0556.53026
[2] Hamilton, R. S.:
The Ricci curvature equation. Lecture notes: Seminar on nonlinear partial differential equations, Mathematical Sciences Research Institute Publications, Berkeley, 1983, 47–72.
MR 0765228
[3] Becce, A. L.:
Einstein manifolds. Springer-Verlag, Berlin–Heidelberg, 1987.
MR 0867684
[5] Stepanov, S., Tsyganok, I.:
Vanishing theorems for projective and harmonic mappings. Journal of Geometry 106, 3 (2015), 640–641.
MR 1878047
[6] Yano, K., Bochner, S.:
Curvature and Betti numbers. Princeton Univ. Press, Princeton, 1953.
MR 0062505 |
Zbl 0051.39402
[8] Schoen, R., Yau, S. T.:
Harmonic maps and topology of stable hypersurfaces and manifolds with non-negative Ricci curvature. Commenttarii Mathematici Helvetici 51, 1 (1976), 333–341.
DOI 10.1007/BF02568161 |
MR 0438388
[10] Yau, S. T.:
Seminar on Differential Geometry. Annals of Mathematics Studies, 102, Princeton Univ. Press, Princeton, NJ, 1982.
MR 0645728 |
Zbl 0471.00020
[11] Berger, M., Ebin, D.:
Some decompositions of the space of symmetric tensors on a Riemannian manifold. Journal of Differential Geometry 3, 3-4 (1969), 379–392.
DOI 10.4310/jdg/1214429060 |
MR 0266084
[12] Pigola, S., Rigoli, M., Setti, A. G.:
Vanishing and finiteness results in geometric analysis. A generalization of the Bochner technique. Birkhäuser, Basel, 2008.
MR 2401291 |
Zbl 1150.53001