[1] Ali, S.T., Englis, M.:
Berezin-Toeplitz quantization over matrix domains. Contributions in Mathematical Physics: A Tribute to Gerard G. Emch, Eds. S.T. Ali and K.B. Sinha, 2007, -, Hindustan Book Agency, New Delhi, India, arXiv: math-ph/0602015.
MR 2423653
[2] Ali, S.T., Englis, M.:
Matrix-valued Berezin-Toeplitz quantization. J. Math. Phys., 48, 5, 2007, 053504, (14 pages). arXiv: math-ph/0611082.
MR 2329866 |
Zbl 1144.81305
[3] Bargmann, V.:
On a Hilbert space of analytic functions and its associated integral transform, Part I. Commun. Pure Appl. Math., 14, 3, 1961, 187-214,
DOI 10.1002/cpa.3160140303 |
MR 0157250
[4] Baz, M. El, Fresneda, R., Gazeau, J.-P., Hassouni, Y.:
Coherent state quantization of paragrassmann algebras. J. Phys. A: Math. Theor., 43, 38, 2010, 385202 (15pp). Also see the Erratum for this article in arXiv:1004.4706v3.
MR 2718322 |
Zbl 1198.81124
[8] Borthwick, D., Klimek, S., Lesniewski, A., Rinaldi, M.:
Matrix Cartan superdomains, super Toeplitz operators, and quantization. J. Funct. Anal., 127, 1995, 456-510, arXiv: hep-th/9406050.
DOI 10.1006/jfan.1995.1020 |
MR 1317726 |
Zbl 0834.58008
[9] Silbermann, A. Böttcher and B.:
Analysis of Toeplitz Operators. 2006, Springer,
MR 2223704
[10] Gazeau, J.-P.: Coherent States in Quantum Physics. 2009, Wiley-VCH,
[11] Hall, B.C.:
Holomorphic methods in analysis and mathematical physics, First Summer School in Analysis and Mathematical Physics, Eds. S. Pérez-Esteva and C. Villegas-Blas. Contemp. Math., 260, 2000, 1-59, Am. Math. Soc.,
DOI 10.1090/conm/260/04156 |
MR 1770752
[12] Iuliu-Lazaroiu, C., McNamee, D., Sämann, C.:
Generalized Berezin-Toeplitz quantization of Kähler supermanifolds. J. High Energy Phys., 2009, 05, 2009, 055, arXiv: 0811.4743v2.
DOI 10.1088/1126-6708/2009/05/055 |
MR 2511387
[13] Karlovich, A. Yu.:
Higher order asymptotic formulas for Toeplitz matrices with symbols in generalized Hölder spaces. Operator Algebras, Operator Theory and Applications, Eds. Maria Amélia Bastos et al, 2008, 207-228, Birkhäuser, arXiv: 0705.0432.
MR 2681889 |
Zbl 1157.47022
[14] Karlovich, A. Yu.:
Asymptotics of Toeplitz Matrices with Symbols in Some Generalized Krein Algebras. Modern Anal. Appl, 2009, 341-359, Springer, arXiv: 0803.3767.
MR 2568640 |
Zbl 1198.47045
[18] Martínez-Avendaño, R.A., Rosenthal, P.:
An Introduction to Operators on the Hardy-Hilbert space. 2007, Springer,
MR 2270722 |
Zbl 1116.47001
[19] Reed, M., Simon, B.: Mathematical Methods of Modern Physics, Vol. I: Functional Analysis. 1972, Academic Press,
[20] Reed, M., Simon, B.:
Mathematical Methods of Modern Physics, Vol. II: Fourier Analysis, Self-Adjointness. 1975, Academic Press,
MR 0493420
[21] Sontz, S.B.:
A Reproducing Kernel and Toeplitz Operators in the Quantum Plane. Communications in Mathematics, 21, 2, 2013, 137-160, arXiv:1305.6986.
MR 3159286 |
Zbl 1297.46023
[22] Sontz, S.B.:
Paragrassmann Algebras as Quantum Spaces, Part I: Reproducing Kernels. Geometric Methods in Physics. XXXI Workshop 2012. Trends in Mathematics, Eds. P. Kielanowski et al., 2013, 47-63, Birkhäuser, arXiv:1204.1033v3.
MR 3363992
[23] Sontz, S.B.:
Toeplitz Quantization without Measure or Inner Product. Geometric Methods in Physics. XXXII Workshop 2013. Trends in Mathematics, 2014, 57-66, \unskip , arXiv:1312.0588.
MR 3587680 |
Zbl 1326.47030
[25] Timmermann, T.:
An invitation to quantum groups and duality: From Hopf algebras to multiplicative unitaries and beyond. 2008, Euro. Math. Soc.,
MR 2397671 |
Zbl 1162.46001