Previous |  Up |  Next

Article

Title: Model following control system with time delays (English)
Author: Wang, Dazhong
Author: Wu, Shujing
Author: Zhang, Wei
Author: Wang, Guoqiang
Author: Wu, Fei
Author: Okubo, Shigenori
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 52
Issue: 3
Year: 2016
Pages: 478-495
Summary lang: English
.
Category: math
.
Summary: Design of model following control system (MFCS) for nonlinear system with time delays and disturbances is discussed. In this paper, the method of MFCS will be extended to nonlinear system with time delays. We set the nonlinear part $f(v(t))$ of the controlled object as $||f(v(t))||\leq\alpha+\beta||v(t)||^\gamma$, and show the bounded of internal states by separating the nonlinear part into $\gamma\geq 0$. Some preliminary numerical simulations are provided to demonstrate the effectiveness of the proposed method. (English)
Keyword: time delays
Keyword: model following control system (MFCS)
Keyword: internal stable
Keyword: nonlinear system
MSC: 93C10
idZBL: Zbl 06644306
idMR: MR3532518
DOI: 10.14736/kyb-2016-3-0478
.
Date available: 2016-07-17T12:21:18Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145787
.
Reference: [1] Akiyama, T., Hattor, H., Okubo, S.: Design of the model following control system with time delays..IEEJ Trans. Electronics, Inform. Systems 118 (1998), 4, 497-502 (in Japaness). 10.1541/ieejeiss1987.118.4_497
Reference: [2] Boulkroune, A., M'Saad, M., Chekireb, H.: Design of a fuzzy adaptive controller for MIMO nonlinear time-delay systems with unknown actuator nonlinearities and unknown control direction..Inform. Sci. 180 (2010), 24, 5041-5059. Zbl 1205.93086, MR 2726676, 10.1016/j.ins.2010.08.034
Reference: [3] Califano, C., Marquez-Martinez, L. A., Moog, C. H.: Extended lie brackets for nonlinear time-delay systems..IEEE Trans. Automat. Control 56 (2011), 9, 2213-2218. MR 2865783, 10.1109/tac.2011.2157405
Reference: [4] Cui, B. T., Lou, X. Y.: Synchronization of chaotic recurrent neural networks with time-varying delays using nonlinear feedback control..Chaos, Solitons, Fractals 39 (2009), 1, 288-294. Zbl 1197.93135, 10.1016/j.chaos.2007.01.100
Reference: [5] Imer, O., Basar, T.: Control of congestion in high-speed networks..European J. Control 7 (2001), 132-144. 10.3166/ejc.7.132-144
Reference: [6] Lan, Y., Zhou, Y.: High-order ($\mathcal{D}^{\alpha}$)-type iterative learning control for fractional-order nonlinear time-delay systems..J. Optim. Theory Appl. 156 (2013), 153-166. Zbl 1263.93099, MR 3019308, 10.1007/s10957-012-0231-2
Reference: [7] Liu, P., Chiang, T. S.: $H_\infty$ output tracking fuzzy control for nonlinear systems with time-varying delay..Applied Soft Computing 12 (2012), 9, 2963-2972. 10.1016/j.asoc.2012.04.025
Reference: [8] Maiti, A., Pal, A., Samanta, G.: Effect of time-delay on a food chain model..Applied Math. Comput. 200 (2008), 189-203. Zbl 1137.92366, MR 2421636, 10.1016/j.amc.2007.11.011
Reference: [9] Ni, M., Li, G.: A direct approach to the design of robust tracking controllers for uncertain delay systems..Asian J. Control 8 (2006), 412-416. MR 2382994, 10.1111/j.1934-6093.2006.tb00293.x
Reference: [10] Okubo, S.: Nonlinear model following control system using stable zero assignment..Trans. Soc. Instrument and Control Engrs. 28 (1992), 8, 939-946 (in Japaness). 10.9746/sicetr1965.28.939
Reference: [11] Pai, M.: Robust tracking and model following of uncertain dynamics systems via discrete-time integral sliding mode control..Int. J. Control Automat. Syst. 7 (2009), 3, 381-387. 10.1007/s12555-009-0307-4
Reference: [12] Pai, M.: Design of adaptive sliding mode controller for robust tracking and model following..J. Frankl. Inst. 347 (2010), 1837-1849. Zbl 1214.93029, MR 2739815, 10.1016/j.jfranklin.2010.10.003
Reference: [13] Quan, Q., Yang, D., Cai, K.: Adaptive compensation for robust tracking of uncertain dynamic delay systems..Acta Automat. Sin. 36 (2010), 8, 1189-1194. MR 2768236, 10.3724/sp.j.1004.2010.01189
Reference: [14] Saglam, C. O., Baran, E. A., Nergiz, A. O., Sabanovic, A.: Model following control with discrete time SMC for time-delayed bilateral control systems..In: Proc. 2011 IEEE International Conference on Mechatronics, Istanbul 2011. 10.1109/icmech.2011.5971262
Reference: [15] Srinathkumar, S.: Model following control systems. Eigenstructure Control Algorithms: Applications to aircraft/rotorcraft handling qualities design..IET Digital Library, 2011.
Reference: [16] Su, H., Chen, G., Wang, X., Lin, Z.: Adaptive second-order consensus of networked mobile agents with nonlinear dynamics..Automatica 47 (2011), 2, 368-375. Zbl 1207.93006, MR 2878286, 10.1016/j.automatica.2010.10.050
Reference: [17] Tadeuse, K.: Application of the drazin inverse to the analysis of descriptor fractional discrete-time linear systems with regular pencil..Int. J. Appl. Math. Comput. Sci. 23 (2013), 1, 29-33. MR 3086469, 10.2478/amcs-2013-0003
Reference: [18] Tsai, C. H., Wang, C. H., Lin, W. S.: Robust fuzzy model-following control of robot manipulators..IEEE Trans. Fuzzy Systems 8 (2000), 462-469. 10.1109/91.868952
Reference: [19] Wang, Y. S., Ma, Q. H., Zhu, Q., Liu, X. T., Zhao, L. H.: An intelligent approach for engine fault diagnosis based on Hilbert-Huang transform and support vector machine..Applied Acoustics 75 (2014), 1-9. 10.1016/j.apacoust.2013.07.001
Reference: [20] Wang, D., Okubo, S.: A design of model following control system for linear neutral system with time-delay..IEEJ Trans. ELS. 128 (2008), 11, 1657-1663 (in Japaness). 10.1541/ieejeiss.128.1657
Reference: [21] Wang, D., Wu, S., Okubo, S.: Design of the state predictive model following control system with time-delay..Int. J. Appl. Math. Comput. Sci. 19 (2009), 2, 247-254. Zbl 1167.93346, 10.2478/v10006-009-0020-8
Reference: [22] Wang, Y. S., Shen, G. Q., Xing, Y. F.: A sound quality model for objective synthesis evaluation of vehicle interior noise based on artificial neural network..Mechanical Systems and Signal Processing 45 (2014), 1, 255-266. 10.1016/j.ymssp.2013.11.001
Reference: [23] Wu, H.: Adaptive robust tracking and model following of uncertain dynamical systems with multiple time-delays..IEEE Trans. Automat. Control 49 (2004), 611-616. MR 2049823, 10.1109/tac.2004.825634
Reference: [24] Wu, S., Okubo, S., Wang, D.: Design of a model following control system for nonlinear descriptor system in discrete time..Kybernetika 44 (2008), 4, 546-556. Zbl 1173.93387, MR 2459072
Reference: [25] Xing, Y. F., Wang, Y. S., Shi, L., Guo, H., Chen, H.: Sound quality recognition using optimal wavelet-packet transform and artificial neural network methods..Mechanical Systems and Signal Processing 66-67 (2016), 875-892. 10.1016/j.ymssp.2015.05.003
Reference: [26] Yang, R., Wang, Y.: Finite-time stability analysis and control for a class of nonlinear time-delay Hamiltonian systems..Automatica 49 (2013), 2, 390-401. MR 3004704, 10.1016/j.automatica.2012.11.034
Reference: [27] Ying, J., Yuan, Y.: Pattern formation in a symmetrical network with delay..Nonlinear Analysis: Real World Appl. 14 (2013), 1102-1113. MR 2991137, 10.1016/j.nonrwa.2012.08.020
Reference: [28] Zhang, T., Ge, S.: Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknown dead-zones and gain..Automatica 43 (2007), 6, 1021-1033. Zbl 1282.93152, MR 2306749, 10.1016/j.automatica.2006.12.014
.

Files

Files Size Format View
Kybernetika_52-2016-3_9.pdf 938.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo