Previous |  Up |  Next

Article

Keywords:
efficient solution; second order $\eta $-approximation; saddle point criteria; optimality condition
Summary:
The purpose of this paper is to apply second order $\eta$-approximation method introduced to optimization theory by Antczak [2] to obtain a new second order $\eta$-saddle point criteria for vector optimization problems involving second order invex functions. Therefore, a second order $\eta$-saddle point and the second order $\eta$-Lagrange function are defined for the second order $\eta$-approximated vector optimization problem constructed in this approach. Then, the equivalence between an (weak) efficient solution of the considered vector optimization problem and a second order $\eta$-saddle point of the second order $\eta$-Lagrangian in the associated second order $\eta$-approximated vector optimization problem is established under the assumption of second order invexity.
References:
[1] Aghezzaf, B., Hachimi, M.: Second-order optimality conditions in multiobjective optimization problems. J. Optim. Theory Appl. 102 (1999), 37-50. DOI 10.1023/a:1021834210437 | MR 1702841 | Zbl 1039.90062
[2] Antczak, T.: An $\eta$-approximation method in nonlinear vector optimization. Nonlinear Anal. 63 (2005), 225-236. DOI 10.1023/a:1021834210437 | MR 2165497 | Zbl 1093.90053
[3] Antczak, T.: Saddle point criteria and duality in multiobjective programming via an $\eta$-approximation method. Anziam J. 47 (2005), 155-172. DOI 10.1017/s1446181100009962 | MR 2187011 | Zbl 1123.90343
[4] Antczak, T.: Saddle point criteria via a second order $\eta$-approximation approach for nonlinear mathematical programming problem involving second order invex functions. Kybernetika 47 (2011), 222-240. MR 2828574
[5] Bazaraa, M. S., Sherali, H. D., Shetty, C. M.: Nonlinear Programming: Theory and Algorithms. John Wiley and Sons, New York 1991. MR 2218478 | Zbl 1140.90040
[6] Bector, C. R., Bector, B. K.: Generalized-bonvex functions and second order duality for a nonlinear programming problem. Congr. Numer. 52 (1985), 37-52. DOI 10.1080/09720502.2003.10700330
[7] Egudo, R. R., Hanson, M. A.: Multiobjective duality with invexity. J. Math. Anal. Appl. 126 (1987), 469-477. DOI 10.1016/0022-247x(87)90054-0 | MR 0900761 | Zbl 0635.90086
[8] Ghosh, M. K., Shaiju, A. J.: Existence of value and saddle point in infinite-dimensional differential games. J. Optim. Theory Appl. 121 (2004), 301-325. DOI 10.1023/b:jota.0000037407.15482.72 | MR 2085280 | Zbl 1099.91023
[9] Hanson, M. A.: On the sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80 (1981), 545-550. DOI 10.1016/0022-247x(81)90123-2 | MR 0614849
[10] Horst, R., Pardalos, P. M., Thoai, N. V.: Introduction to Global Optimization. Second edition. Kluwer Academic Publishers, 2000. MR 1799654
[11] Li, Z. F., Wang, S. Y.: Lagrange multipliers and saddle points in multiobjective programming. J. Optim. Theory Appl. 83 (1994), 63- 81. DOI 10.1007/bf02191762 | MR 1298857 | Zbl 0823.90107
[12] Li, T., Wang, Y. J., Liang, Z., Pardalos, P. M.: Local saddle point and a class of convexification methods for nonconvex optimization problems. J. Glob. Optim. 38 (2007), 405-419. DOI 10.1007/s10898-006-9090-4 | MR 2328021 | Zbl 1175.90317
[13] Luc, D. T.: Theory of Vector Optimization. Springer-Verlag, Lecture Notes in Economics and Mathematical systems 319, Berlin, New York 1989. DOI 10.1007/978-3-642-50280-4 | MR 1116766 | Zbl 0654.90082
Partner of
EuDML logo