[2] Agahi, H., Mesiar, R.:
On Cauchy-Schwarz's inequality for Choquet-like integrals without the comonotonicity condition. Soft Computing 19 (2015), 1627-1634.
DOI 10.1007/s00500-014-1578-0
[4] Borzová-Molnárová, J., Halčinová, L., Hutník, O.:
The smallest semicopula-based universal integrals I: Properties and characterizations. Fuzzy Sets and Systems 271 (2015), 1-17.
MR 3336136
[5] Borzová-Molnárová, J., Halčinová, L., Hutník, O.:
The smallest semicopula-based universal integrals II: Convergence theorems. Fuzzy Sets and Systems 271 (2015), 18-30.
MR 3336137
[6] Borzová-Molnárová, J., Halčinová, L., Hutník, O.: The smallest semicopula-based universal integrals III: Topology determined by the integral. Fuzzy Sets and Systems (2016).
[11] Daraby, B., Ghadimi, F.:
General Minkowski type and related inequalities for seminormed fuzzy integrals. Sahand Commun. Math. Analysis 1 (2014), 9-20.
Zbl 1317.26023
[12] Dunford, N., Schwartz, J. T.:
Linear Operators, Part I General Theory. A Wiley Interscience Publishers, New York 1988.
MR 1009162 |
Zbl 0635.47001
[14] Fan, K.:
Entfernung zweier zufälligen Grössen und die Konvergenz nach Wahrscheinlichkeit. Math. Zeitschrift 49 (1944), 681-683.
DOI 10.1007/bf01174225 |
MR 0011903
[16] Fréchet, M.: Sur divers modes de convergence d'une suite de fonctions d'une variable. Bull. Calcutta Math. Soc. 11 (1919-20), 187-206.
[17] Greco, S., Mesiar, R., Rindone, F., Šipeky, L.:
Superadditive and subadditive transformations of integrals and aggregation functions. Fuzzy Sets and Systems 291 (2016), 40-53.
MR 3463652
[23] Klement, E. P., Mesiar, R., Pap, E.:
A universal integral as common frame for Choquet and Sugeno integral. IEEE Trans. Fuzzy Systems 18 (2010), 178-187.
DOI 10.1109/tfuzz.2009.2039367
[29] Pap, E., ed.: Handbook of Measure Theory. Elsevier Science, Amsterdam 2002.
[34] Sugeno, M.: Theory of Fuzzy Integrals and its Applications. Ph.D. Dissertation, Tokyo Institute of Technology 1974.