Previous |  Up |  Next

Article

Title: Polycyclic groups with automorphisms of order four (English)
Author: Xu, Tao
Author: Zhou, Fang
Author: Liu, Heguo
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 2
Year: 2016
Pages: 575-582
Summary lang: English
.
Category: math
.
Summary: In this paper, we study the structure of polycyclic groups admitting an automorphism of order four on the basis of Neumann's result, and prove that if $\alpha $ is an automorphism of order four of a polycyclic group $G$ and the map $\varphi \colon G\rightarrow G$ defined by $g^{\varphi }=[g,\alpha ]$ is surjective, then $G$ contains a characteristic subgroup $H$ of finite index such that the second derived subgroup $H''$ is included in the centre of $H$ and $C_{H}(\alpha ^{2})$ is abelian, both $C_{G}(\alpha ^{2})$ and $G/[G,\alpha ^{2}]$ are abelian-by-finite. These results extend recent and classical results in the literature. (English)
Keyword: polycyclic group
Keyword: regular automorphism
Keyword: surjectivity
MSC: 20E36
idZBL: Zbl 06604487
idMR: MR3519622
DOI: 10.1007/s10587-016-0276-8
.
Date available: 2016-06-16T13:07:09Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/145744
.
Reference: [1] Burnside, W.: Theory of Groups of Finite Order.Dover Publications New York (1955). Zbl 0064.25105, MR 0069818
Reference: [2] Endimioni, G.: On almost regular automorphisms.Arch. Math. 94 (2010), 19-27. Zbl 1205.20041, MR 2581329, 10.1007/s00013-009-0084-6
Reference: [3] Endimioni, G., Moravec, P.: On the centralizer and the commutator subgroup of an automorphism.Monatsh. Math. 167 (2012), 165-174. Zbl 1270.20031, MR 2954523, 10.1007/s00605-011-0298-0
Reference: [4] Gorenstein, D.: Finite Groups.Harper's Series in Modern Mathematics, Harper and Row, Publishers New York (1968). Zbl 0185.05701, MR 0231903
Reference: [5] Higman, G.: Groups and rings having automorphisms without non-trivial fixed elements.J. Lond. Math. Soc. 32 (1957), 321-334. MR 0089204, 10.1112/jlms/s1-32.3.321
Reference: [6] Kovács, L. G.: Group with regular automorphisms of order four.Math. Z. 75 (1961), 277-294. MR 0123613, 10.1007/BF01211026
Reference: [7] Lennox, J. C., Robinson, D. J. S.: The Theory of Infinite Soluble Groups.Oxford Science Publications Oxford (2004). Zbl 1059.20001, MR 2093872
Reference: [8] Neumann, B. H.: Groups with automorphisms that leave only the neutral element fixed.Arch. Math. 7 (1956), 1-5. Zbl 0070.02203, MR 0074413, 10.1007/BF01900516
Reference: [9] Robinson, D. J. S.: A Course in the Theory of Groups.Springer New York (1996). MR 1357169
Reference: [10] Shmel'kin, A. L.: Polycyclic groups.Sib. Math. J. Russian 9 (1968), 234-235. Zbl 0203.32602
Reference: [11] Tao, X., Heguo, L.: Polycyclic groups admitting an automorphism of prime order.Submitted to Ukrainnian Math. J.
Reference: [12] Tao, X., Heguo, L.: On regular automorphisms of soluble groups of finite rank.Chin. Ann. Math. A35 (2014), Chinese 543-550, doi 10.3103/S0898511114040036. Zbl 1324.20023, MR 3290005, 10.3103/S0898511114040036
Reference: [13] Thompson, J. G.: Finite group with fixed-point-free automorphisms of prime order.Proc. Natl. Acad. Sci. 45 (1959), 578-581. MR 0104731, 10.1073/pnas.45.4.578
.

Files

Files Size Format View
CzechMathJ_66-2016-2_21.pdf 237.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo