[1] Aghasi, M., Nasehi, M.:
On homogeneous Randers spaces with Douglas or naturally reductive metrics. Differ. Geom. Dyn. Syst. 17 (2015), 1-12.
MR 3367072 |
Zbl 1333.53068
[3] Aghasi, M., Nasehi, M.:
Some geometrical properties of a five-dimensional solvable Lie group. Differ. Geom. Dyn. Syst. 15 (2013), 1-12.
MR 3073067 |
Zbl 1331.53071
[4] Belkhelfa, M., Dillen, F., Inoguchi, J.:
Surfaces with parallel second fundamental form in Bianchi-Cartan-Vranceanu spaces. PDEs, Submanifolds and Affine Differential Geometry, Warszawa, 2000 Polish Academy of Sciences, Inst. Math., Warszawa Banach Cent. Publ. 57 (2002), 67-87 B. Opozda, et al.
MR 1972463 |
Zbl 1029.53071
[5] Božek, M.:
Existence of generalized symmetric Riemannian spaces with solvable isometry group. Čas. Pěst. Mat. 105 (1980), 368-384.
MR 0597914 |
Zbl 0475.53045
[7] Calvaruso, G., Veken, J. Van der:
Totally geodesic and parallel hypersurfaces of four-dimensional oscillator groups. Results Math. 64 (2013), 135-153.
DOI 10.1007/s00025-012-0304-4 |
MR 3095133
[9] Calvaruso, G., Veken, J. Van der:
Lorentzian symmetric three-spaces and the classification of their parallel surfaces. Int. J. Math. 20 (2009), 1185-1205.
DOI 10.1142/S0129167X09005728 |
MR 2574312
[11] Chen, B.-Y., Veken, J. Van der:
Complete classification of parallel surfaces in 4-dimensional Lorentzian space forms. Tohoku Math. J. 61 (2009), 1-40.
DOI 10.2748/tmj/1238764545 |
MR 2501861
[12] Leo, B. De, Veken, J. Van der:
Totally geodesic hypersurfaces of four-dimensional generalized symmetric spaces. Geom. Dedicata 159 (2012), 373-387.
DOI 10.1007/s10711-011-9665-1 |
MR 2944538
[13] Homolya, S., Kowalski, O.:
Simply connected two-step homogeneous nilmanifolds of dimension 5. Note Mat. 26 (2006), 69-77.
MR 2267683 |
Zbl 1115.53035
[14] Inoguchi, J., Veken, J. Van der:
A complete classification of parallel surfaces in three-dimensional homogeneous spaces. Geom. Dedicata 131 (2008), 159-172.
DOI 10.1007/s10711-007-9222-0 |
MR 2369197
[15] Inoguchi, J., Veken, J. Van der:
Parallel surfaces in the motion groups $E(1,1)$ and $E(2)$. Bull. Belg. Math. Soc.-Simon Stevin 14 (2007), 321-332.
DOI 10.36045/bbms/1179839224 |
MR 2341567
[16] Kowalski, O.:
Generalized Symmetric Spaces. Lecture Notes in Mathematics 805 Springer, Berlin (1980).
MR 0579184 |
Zbl 0431.53042
[19] Moghaddam, H. R. Salimi:
On the Randers metrics on two-step homogeneous nilmanifolds of dimension five. Int. J. Geom. Methods Mod. Phys. 8 (2011), 501-510.
DOI 10.1142/S0219887811005257 |
MR 2807115