Article
Keywords:
algebraic equation; Cauchy transform; quadratic differential
Summary:
We discuss the representability almost everywhere (a.e.) in $\mathbb {C}$ of an irreducible algebraic function as the Cauchy transform of a signed measure supported on a finite number of compact semi-analytic curves and a finite number of isolated points. This brings us to the study of trajectories of the particular family of quadratic differentials $A(z-a)(z-b)\*(z-c)^{-2} {\rm d} z^{2}$. More precisely, we give a necessary and sufficient condition on the complex numbers $a$ and $b$ for these quadratic differentials to have finite critical trajectories. We also discuss all possible configurations of critical graphs.
References:
[1] Atia, M. J., Martínez-Finkelshtein, A., Martínez-González, P., Thabet, F.:
Quadratic differentials and asymptotics of Laguerre polynomials with varying complex parameters. J. Math. Anal. Appl. 416 (2014), 52-80.
DOI 10.1016/j.jmaa.2014.02.040 |
MR 3182748 |
Zbl 1295.30015
[2] Jenkins, J. A.:
Univalent Functions and Conformal Mapping. Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge, Heft 18. Reihe: Moderne Funktionentheorie Springer, Berlin (1958).
MR 0096806 |
Zbl 0083.29606
[4] Martínez-Finkelshtein, A., Martínez-González, P., Orive, R.:
On asymptotic zero distribution of Laguerre and generalized Bessel polynomials with varying parameters. J. Comput. Appl. Math. 133 (2001), 477-487 Conf. Proc. (Patras, 1999), Elsevier (North-Holland), Amsterdam.
DOI 10.1016/S0377-0427(00)00654-3 |
MR 1858305 |
Zbl 0990.33009
[5] Pommerenke, C.:
Univalent Functions. With a Chapter on Quadratic Differentials by Gerd Jensen. Studia Mathematica/Mathematische Lehrbücher. Band 25. Vandenhoeck & Ruprecht, Göttingen (1975).
MR 0507768 |
Zbl 0298.30014
[7] Strebel, K.:
Quadratic Differentials. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) Vol. 5 Springer, Berlin (1984).
MR 0743423 |
Zbl 0547.30038