[1] Amrouche, C., Girault, V.:
Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension. Czech. Math. J. 44 (1994), 109-140.
MR 1257940 |
Zbl 0823.35140
[2] Bridgman, P. W.: The Physics of High Pressure. MacMillan, New York (1931).
[3] Bulíček, M., Fišerová, V.:
Existence theory for steady flows of fluids with pressure and shear rate dependent viscosity, for low values of the power-law index. Z. Anal. Anwend. 28 (2009), 349-371.
DOI 10.4171/ZAA/1389 |
MR 2506365 |
Zbl 1198.35174
[4] Bulíček, M., Kaplický, P.:
Incompressible fluids with shear rate and pressure dependent viscosity: regularity of steady planar flows. Discrete Contin. Dyn. Syst. Ser. S 1 (2008), 41-50.
MR 2375580 |
Zbl 1153.35314
[5] Bulíček, M., Málek, J., Rajagopal, K. R.:
Analysis of the flows of incompressible fluids with pressure dependent viscosity fulfilling $\nu(p,\cdot)\rightarrow +\infty$ as $p\rightarrow +\infty$. Czech. Math. J. 59 (2009), 503-528.
DOI 10.1007/s10587-009-0034-2 |
MR 2532387
[10] Franta, M., Málek, J., Rajagopal, K. R.:
On steady flows of fluids with pressure- and shear-dependent viscosities. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. (2005), 461 651-670.
MR 2121929 |
Zbl 1145.76311
[11] Gazzola, F., Secchi, P.:
Some results about stationary Navier-Stokes equations with a pressure-dependent viscosity. Navier-Stokes Equations: Theory and Numerical Methods, Varenna, 1997 R. Salvi 31-37 Pitman Res. Notes Math. Ser. 388 Longman, Harlow (1998).
MR 1773582 |
Zbl 0940.35156
[12] Giusti, E.:
Metodi Diretti Nel Calcolo Delle Variazioni. Italian Unione Matematica Italiana, Bologna (1994).
MR 1707291 |
Zbl 0942.49002
[14] Knauf, S., Frei, S., Richter, T., Rannacher, R.:
Towards a complete numerical description of lubricant film dynamics in ball bearings. Comput. Mech. 53 (2014), 239-255.
DOI 10.1007/s00466-013-0904-1 |
MR 3158820
[15] Lanzendörfer, M.:
On steady inner flows of an incompressible fluid with the viscosity depending on the pressure and the shear rate. Nonlinear Anal., Real World Appl. 10 (2009), 1943-1954.
MR 2508405 |
Zbl 1163.76335
[16] Lanzendörfer, M.: Numerical Simulations of the Flow in the Journal Bearing. Master's Thesis. Charles University in Prague, Faculty of Mathematics and Physics (2003).
[18] Mácha, V.:
Partial regularity of solution to generalized Navier-Stokes problem. Cent. Eur. J. Math. 12 (2014), 1460-1483.
MR 3224012 |
Zbl 1303.35058
[19] Mácha, V., Tichý, J.:
Higher integrability of solution to generalized Stokes system under perfect slip boundary conditions. J. Math. Fluid Mech. 16 (2014), 823-845.
DOI 10.1007/s00021-014-0190-5 |
MR 3267551
[20] Málek, J.:
Mathematical properties of flows of incompressible power-law-like fluids that are described by implicit constitutive relations. Electron. Trans. Numer. Anal. 31 (2008), 110-125.
MR 2569596 |
Zbl 1182.35182
[21] Málek, J., Mingione, G., Stará, J.:
Fluids with Pressure Dependent Viscosity, Partial Regularity of Steady Flows. F. Dumortier, et al. Equadiff 2003. Proc. Int. Conf. Differential Equations World Sci. Publ., Hackensack 380-385 (2005).
MR 2185057 |
Zbl 1101.76021
[23] Roubíček, T.:
Nonlinear Partial Differential Equations with Applications. International Series of Numerical Mathematics 153 Birkhäuser, Basel (2005).
MR 2176645 |
Zbl 1087.35002