[1] Denjoy, A.: Une extension de l'intégrale de M. Lebesgue. C. R. Acad. Sci., Paris 154 (1912), 859-862 French.
[2] Pauw, T. De, Pfeffer, W.F.:
Distributions for which $ div v={F}$ has continuous solution. Commun. Pure Appl. Math. 61 (2008), 230-260.
DOI 10.1002/cpa.20204 |
MR 2368375
[6] Kurzweil, J.:
Generalized ordinary differential equations and continuous dependence on a parameter. Czech. Math. J. 7(82) (1957), 418-449.
MR 0111875 |
Zbl 0090.30002
[7] Jarník, J., Kurzweil, J.:
A non absolutely convergent integral which admits transformation and can be used for integration on manifolds. Czech. Math. J. 35(110) (1985), 116-139.
MR 0779340 |
Zbl 0614.26007
[8] Jarník, J., Kurzweil, J.:
A nonabsolutely convergent integral which admits $C^1$-transfor-mations. Čas. Pěst. Mat. 109 (1984), 157-167.
MR 0744873
[9] Jarník, J., Kurzweil, J., Schwabik, Š.:
On Mawhin's approach to multiple nonabsolutely convergent integral. Čas. Pěst. Mat. 108 (1983), 356-380.
MR 0727536 |
Zbl 0555.26004
[10] Mawhin, J.:
Generalized multiple Perron integrals and the Green-{G}oursat theorem for differentiable vector fields. Czech. Math. J. 31(106) (1981), 614-632.
MR 0631606 |
Zbl 0562.26004
[11] Mawhin, J.:
Generalized Riemann integrals and the divergence theorem for differentiable vector fields. E. B. Christoffel. The Influence of His Work on Mathematics and the Physical Sciences. Int. Christoffel Symp. in Honour of Christoffel on the 150th Anniversary of his Birth, Aachen and Monschau, Germany, 1979 Birkhäuser, Basel (1981), 704-714 P. L. Butzer et al.
MR 0661109 |
Zbl 0562.26003
[12] Perron, O.: Über den Integralbegriff. Heidelb. Ak. Sitzungsber. 14 Heidelberg German (1914).
[15] Pfeffer, W.F.:
Derivation and Integration. Cambridge Tracts in Mathematics 140 Cambridge University Press, Cambridge (2001).
MR 1816996 |
Zbl 0980.26008
[18] Pfeffer, W.F.:
A Riemann-type integral and the divergence theorem. C.R. Acad. Sci., Paris, (1) 299 (1984), 299-301 French.
MR 0761251 |
Zbl 0574.26009