Article
Keywords:
function spaces; $C_p(X,Y)$; Rothberger spaces; $\Psi$-space
Summary:
A space $X$ is said to have the Rothberger property (or simply $X$ is Rothberger) if for every sequence $\langle\,\mathcal U_n:n\in \omega\,\rangle$ of open covers of $X$, there exists $U_n\in \mathcal U_n$ for each $n\in\omega$ such that $X = \bigcup_{n\in \omega}U_n$. For any $n\in \omega$, necessary and sufficient conditions are obtained for $C_p(\Psi(\mathcal A),2)^n$ to have the Rothberger property when $\mathcal A$ is a Mrówka mad family and, assuming CH (the Continuum Hypothesis), we prove the existence of a maximal almost disjoint family $\mathcal A$ for which the space $C_p(\Psi(\mathcal A),2)^n\,$ is Rothberger for all $n\in\omega$.
References:
[1] Arhangel'skiĭ A.V.:
Topological Function Spaces. Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers, 1992.
MR 1144519
[2] Bernal-Santos D.:
The Rothberger property on $C_p(X, 2)$. Topology Appl. 196 (2015), 106–119.
MR 3422736
[3] Bernal-Santos D., Tamariz-Macarúa Á.:
The Menger property on $C_p(X,2)$. Topology Appl. 183 (2015), 110–126.
MR 3310340
[7] Rothberger F.: Eine Verschärfung der Eigenschaft C. Fund. Math. 30 (1938), 50–55.