Previous |  Up |  Next

Article

Keywords:
a posteriori error estimate; general optimal control problem; nonlinear parabolic equation; mixed finite element method
Summary:
We study new a posteriori error estimates of the mixed finite element methods for general optimal control problems governed by nonlinear parabolic equations. The state and the co-state are discretized by the high order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a posteriori error estimates in $L^{\infty }(J;L^2(\Omega )) $-norm and $L^2(J;L^2(\Omega ))$-norm for both the state, the co-state and the control approximation. Such estimates, which seem to be new, are an important step towards developing a reliable adaptive mixed finite element approximation for optimal control problems. Finally, the performance of the posteriori error estimators is assessed by two numerical examples.
References:
[1] Babuška, I., Strouboulis, T.: The Finite Element Method and Its Reliability. Numerical Mathematics and Scientific Computation The Clarendon Press, Oxford University Press, New York (2001). MR 1857191
[2] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics 15 Springer, New York (1991). MR 1115205 | Zbl 0788.73002
[3] Carstensen, C.: A posteriori error estimate for the mixed finite element method. Math. Comput. 66 (1997), 465-476. DOI 10.1090/S0025-5718-97-00837-5 | MR 1408371 | Zbl 0864.65068
[4] Chen, Y., Huang, Y., Liu, W., Yan, N.: Error estimates and superconvergence of mixed finite element methods for convex optimal control problems. J. Sci. Comput. 42 (2010), 382-403. DOI 10.1007/s10915-009-9327-8 | MR 2585589 | Zbl 1203.49042
[5] Chen, Y., Liu, L., Lu, Z.: A posteriori error estimates of mixed methods for parabolic optimal control problems. Numer. Funct. Anal. Optim. 31 (2010), 1135-1157. DOI 10.1080/01630563.2010.492046 | MR 2738842 | Zbl 1219.49025
[6] Chen, Y., Lu, Z.: Error estimates for parabolic optimal control problem by fully discrete mixed finite element methods. Finite Elem. Anal. Des. 46 (2010), 957-965. DOI 10.1016/j.finel.2010.06.011 | MR 2678160
[7] Chen, Y., Lu, Z.: Error estimates of fully discrete mixed finite element methods for semilinear quadratic parabolic optimal control problem. Comput. Methods Appl. Mech. Eng. 199 (2010), 1415-1423. DOI 10.1016/j.cma.2009.11.009 | MR 2630151 | Zbl 1231.65152
[8] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications. Vol. 4 North-Holland Publishing Company, Amsterdam (1978). MR 0520174 | Zbl 0383.65058
[9] Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems. I: A linear model problem. SIAM J. Numer. Anal. 28 (1991), 43-77. DOI 10.1137/0728003 | MR 1083324 | Zbl 0732.65093
[10] Hoppe, R. H. W., Iliash, Y., Iyyunni, C., Sweilam, N. H.: A posteriori error estimates for adaptive finite element discretizations of boundary control problems. J. Numer. Math. 14 (2006), 57-82. DOI 10.1163/156939506776382139 | MR 2229819 | Zbl 1104.65066
[11] Hou, L. S., Turner, J. C.: Analysis and finite element approximation of an optimal control problem in electrochemistry with current density controls. Numer. Math. 71 (1995), 289-315. DOI 10.1007/s002110050146 | MR 1347571 | Zbl 0827.49002
[12] Knowles, G.: Finite element approximation of parabolic time optimal control problems. SIAM J. Control Optimization 20 (1982), 414-427. DOI 10.1137/0320032 | MR 0652217 | Zbl 0481.49026
[13] Li, R., Liu, W., Ma, H., Tang, T.: Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J. Control Optimization 41 (2002), 1321-1349. DOI 10.1137/S0363012901389342 | MR 1971952 | Zbl 1034.49031
[14] Lions, J. L.: Optimal Control of Systems Governed by Partial Differential Equations. Die Grundlehren der mathematischen Wissenschaften 170 Springer, Berlin (1971). MR 0271512 | Zbl 0203.09001
[15] Liu, W., Ma, H., Tang, T., Yan, N.: A posteriori error estimates for discontinuous Galerkin time-stepping method for optimal control problems governed by parabolic equations. SIAM J. Numer. Anal. 42 (2004), 1032-1061. DOI 10.1137/S0036142902397090 | MR 2113674 | Zbl 1085.65054
[16] Liu, W., Yan, N.: A posteriori error estimates for convex boundary control problems. SIAM J. Numer. Anal. 39 (2001), 73-99. DOI 10.1137/S0036142999352187 | MR 1860717 | Zbl 0988.49018
[17] Liu, W., Yan, N.: A posteriori error estimates for distributed convex optimal control problems. Adv. Comput. Math. 15 (2001), 285-309. DOI 10.1023/A:1014239012739 | MR 1887737 | Zbl 1008.49024
[18] Liu, W., Yan, N.: A posteriori error estimates for control problems governed by Stokes equations. SIAM J. Numer. Anal. 40 (2002), 1850-1869. DOI 10.1137/S0036142901384009 | MR 1950625 | Zbl 1028.49025
[19] Liu, W., Yan, N.: A posteriori error estimates for optimal control problems governed by parabolic equations. Numer. Math. 93 (2003), 497-521. DOI 10.1007/s002110100380 | MR 1953750 | Zbl 1049.65057
[20] Lu, Z., Chen, Y.: A posteriori error estimates of triangular mixed finite element methods for semilinear optimal control problems. Adv. Appl. Math. Mech. 1 (2009), 242-256. MR 2520864 | Zbl 1262.49009
[21] R. S. McKnight, W. E. Bosarge, Jr.: The Ritz-Galerkin procedure for parabolic control problems. SIAM J. Control Optim. 11 (1973), 510-524. DOI 10.1137/0311040 | MR 0403754 | Zbl 0237.65071
[22] Milner, F. A.: Mixed finite element methods for quasilinear second-order elliptic problems. Math. Comput. 44 (1985), 303-320. DOI 10.1090/S0025-5718-1985-0777266-1 | MR 0777266 | Zbl 0567.65079
[23] Scott, L. R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990), 483-493. DOI 10.1090/S0025-5718-1990-1011446-7 | MR 1011446 | Zbl 0696.65007
[24] Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics 25 Springer, Berlin (1997). MR 1479170 | Zbl 0884.65097
[25] Tiba, D.: Lectures on the Optimal Control of Elliptic Problems. University of Jyvaskyla Press, Jyvaskyla, Finland (1995).
Partner of
EuDML logo