[1] Babuška, I., Strouboulis, T.:
The Finite Element Method and Its Reliability. Numerical Mathematics and Scientific Computation The Clarendon Press, Oxford University Press, New York (2001).
MR 1857191
[2] Brezzi, F., Fortin, M.:
Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics 15 Springer, New York (1991).
MR 1115205 |
Zbl 0788.73002
[6] Chen, Y., Lu, Z.:
Error estimates for parabolic optimal control problem by fully discrete mixed finite element methods. Finite Elem. Anal. Des. 46 (2010), 957-965.
DOI 10.1016/j.finel.2010.06.011 |
MR 2678160
[8] Ciarlet, P. G.:
The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications. Vol. 4 North-Holland Publishing Company, Amsterdam (1978).
MR 0520174 |
Zbl 0383.65058
[14] Lions, J. L.:
Optimal Control of Systems Governed by Partial Differential Equations. Die Grundlehren der mathematischen Wissenschaften 170 Springer, Berlin (1971).
MR 0271512 |
Zbl 0203.09001
[15] Liu, W., Ma, H., Tang, T., Yan, N.:
A posteriori error estimates for discontinuous Galerkin time-stepping method for optimal control problems governed by parabolic equations. SIAM J. Numer. Anal. 42 (2004), 1032-1061.
DOI 10.1137/S0036142902397090 |
MR 2113674 |
Zbl 1085.65054
[20] Lu, Z., Chen, Y.:
A posteriori error estimates of triangular mixed finite element methods for semilinear optimal control problems. Adv. Appl. Math. Mech. 1 (2009), 242-256.
MR 2520864 |
Zbl 1262.49009
[24] Thomée, V.:
Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics 25 Springer, Berlin (1997).
MR 1479170 |
Zbl 0884.65097
[25] Tiba, D.: Lectures on the Optimal Control of Elliptic Problems. University of Jyvaskyla Press, Jyvaskyla, Finland (1995).