[1] Belkhelfa, M., Deszcz, R., Verstraelen, L.:
Symmetry properties of Sasakian space forms. Soochow J. Math. 31 (2005), 611–616.
MR 2190204 |
Zbl 1087.53021
[2] Blair, D.E.:
Contact manifolds in Riemannian geometry. Lecture Notes in Math., Springer–Verlag, Berlin, 1976.
MR 0467588 |
Zbl 0319.53026
[5] Chaki, M.C., Chaki, B.:
On pseudosymmetric manifolds admitting a type of semisymmetric connection. Soochow J. Math. 13 (1987), 1–7.
MR 0924340
[9] Defever, F., Deszcz, R., Verstraelen, L., Vrancken, L.:
On pseudosymmetric spacetimes. J. Math. Phys. 35 (1994), 5908–5921.
DOI 10.1063/1.530718 |
MR 1299927
[10] Deszcz, R.:
On Ricci–pseudo–symmetric warped products. Demonstratio Math. 22 (1989), 1053–1065.
MR 1077121 |
Zbl 0707.53020
[14] Hashimoto, N., Sekizawa, M.:
Three-dimensional conformally flat pseudo–symmetric spaces of constant type. Arch. Math. (Brno) 36 (2000), 279–286.
MR 1811172 |
Zbl 1054.53060
[15] Kowalski, O., Sekizawa, M.:
Local isometry classes of Riemannian 3–manifolds with constant Ricci eigenvalues $\rho _1 = \rho _ 2\ne \rho _ 3$. Arch. Math. (Brno) 32 (1996), 137–145.
MR 1407345
[16] Kowalski, O., Sekizawa, M.: Three–dimensional Riemannian manifolds of c–conullity two. World Scientific (Singapore–New Jersey–London–Hong Kong) (1996), Published as Chapter 11 in Monograph E. Boeckx, O. Kowalski, L. Vanhecke, Riemannian Manifolds of Conullity Two.
[17] Kowalski, O., Sekizawa, M.:
Pseudo–symmetric spaces of constant type in dimension three–elliptic spaces. Rend. Mat. Appl. (7) 17 (1997), 477–512.
MR 1608724 |
Zbl 0889.53026
[18] Kowalski, O., Sekizawa, M.:
Pseudo–symmetric spaces of constant type in dimension three–non–elliptic spaces. Bull. Tokyo Gakugei Univ. (4) 50 (1998), 1–28.
MR 1656076 |
Zbl 0945.53020
[21] Özgür, C.: On Kenmotsu manifolds satisfying certain pseudosymmetric conditions. World Appl. Sci. J. 1 (2006), 144–149.
[22] Papantoniou, B.J.:
Contact Riemannian manifolds satifying $R(\xi , X)\cdot R = 0$ and $ \xi \in (\kappa , \mu )$–nullity distribution. Yokohama Math. J. 40 (1993), 149–161.
MR 1216349
[23] Prakasha, D.G., Bagewadi, C.S., Basavarajappa, N.S.:
On pseudosymmetric Lorentzian $\alpha $–Sasakian manifolds. Int. J. Pure Appl. Math. 48 (2008), 57–65.
MR 2456434 |
Zbl 1155.53019
[24] Szabó, Z.I.:
Structure theorems on Riemannian manifolds satisfying $R(X,Y)\cdot R=0$. I. The local version. J. Differential Geom. 17 (1982), 531–582.
DOI 10.4310/jdg/1214437486 |
MR 0683165
[25] Szabó, Z.I.:
Structure theorems on Riemannian manifolds satisfying $R(X,Y)\cdot R=0$. II. Global versions. Geom. Dedicata 19 (1) (1985), 65–108.
DOI 10.1007/BF00233102 |
MR 0797152