[3] Burnham, K. P., D., Anderson, R.:
Multimodel inference: Understanding AIC and BIC in model selection. Sociolog. Methods Res. 33 (2004), 261-304.
DOI 10.1177/0049124104268644 |
MR 2086350
[7] Hannan, E. J., Quinn, B. G.:
The determination of the order of an autoregression. J. Royal Statist. Soc. B 41 (1979), 190-195.
MR 0547244 |
Zbl 0408.62076
[9] Kakde, C. S., Shirke, D. T.: On exponentiated lognormal distribution. Int. J. Agricult. Statist. Sci. 2 (2006), 319-326.
[10] Kolmogorov, A.: Sulla determinazione empirica di una legge di distribuzione. Giornale dell'Istituto Italiano degli Attuari 4 (1933), 83-91.
[11] Kolowrocki, K.: Reliability of Large Systems. Elsevier, New York 2004.
[12] Leadbetter, M. R., Lindgren, G., Rootzén, H.:
Extremes and Related Properties of Random Sequences and Processes. Springer Verlag, New York 1987.
MR 0691492 |
Zbl 0518.60021
[13] Lehmann, L. E., Casella, G.:
Theory of Point Estimation. Second edition. Springer Verlag, New York 1998.
DOI 10.1007/b98854 |
MR 1639875
[16] Mudholkar, G. S., Srivastava, D. K.:
Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Trans. Reliability 42 (1993), 299-302.
DOI 10.1109/24.229504 |
Zbl 0800.62609
[17] Mudholkar, G. S., Srivastava, D. K., Friemer, M.:
The exponential Weibull family: Analysis of the bus-motor-failure data. Technometrics 37 (1995), 436-445.
DOI 10.2307/1269735
[18] Mudholkar, G. S., Srivastava, D. K., Kollia, G. D.:
A generalization of the Weibull distribution with application to the analysis of survival data. J. Amer. Statist. Assoc. 91 (1996), 1575-1583.
DOI 10.2307/2291583 |
MR 1439097 |
Zbl 0881.62017
[19] Nadarajah, S.:
The exponentiated Gumbel distribution with climate application. Environmetrics 17 (2005), 13-23.
DOI 10.2307/2291583 |
MR 2222031
[23] Nichols, M. D., Padgett, W. J.:
A bootstrap control chart for Weibull percentiles. Qual. Reliab. Engrg. Int. 22 (2006), 141-151.
DOI 10.1002/qre.691
[25] Team, R Development Core: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria 2014.
[28] Shams, T. M.: The Kumaraswamy-generalized exponentiated Pareto distribution. European J. Appl. Sci. 5 (2013), 92-99.