[1] Adcock, R. J.:
Note on the method of least squares. The Analyst 4 (1877), 183-184.
DOI 10.2307/2635777
[8] Friedman, M.:
The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Amer. Statist. Assoc. 32 (1937), 675-701.
DOI 10.1080/01621459.1937.10503522
[10] Golub, G. H., Loan, C. F. van:
An analysis of the total least squares problem. SIAM J. Numer. Anal. 17 (1980), 883-893.
DOI 10.1137/0717073 |
MR 0595451
[12] Hotteling, H., Pabst, M. R.:
Rank correlation and tests of significance involving no assumptions of normality. Ann. Math. Statist. 7 (1936), 29-43.
DOI 10.1214/aoms/1177732543
[13] Jurečková, J., Koul, H. L., Navrátil, R., Picek, J.: Behavior of R-estimators under measurement errors. To apper in Bernoulli.
[15] Jurečková, J., Sen, P. K., Picek, J.:
Metodological Tools in Robust and Nonparametric Statistics. Chapman and Hall/CRC Press, Boca Raton, London 2013.
MR 2963549
[18] Navrátil, R., Saleh, A. K. Md. E.:
Rank tests of symmetry and R-estimation of location parameter under measurement errors. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 50 (2011), 95-102.
MR 2920711
[19] Pitman, E. J. G.: Lecture Notes on Nonparametric Statistics. Columbia University, New York 1948.
[21] Smirnov, N. V.: Sur la distribution de $\omega^2$ (criterium de m. r. v. mises). C. R. Akad. Sci. Paris 202 (1936), 449-452.
[23] Tolmatz, L.:
Addenda: On the distribution of the square integral of the brownian bridge. The Annals of Probab. 31 (2003), 530-532.
MR 1959802
[24] Wilcoxon, F.:
Individual comparisons by ranking methods. Biometrics 1 (1945), 80-83.
DOI 10.2307/3001968