[2] Drábek, P., Kučera, M., Míková, M.:
Bifurcation points of reaction-diffusion systems with unilateral conditions. Czech. Math. J. 35 (1985), 639-660.
MR 0809047 |
Zbl 0604.35042
[3] Drábek, P., Kufner, A., Nicolosi, F.:
Quasilinear Elliptic Equations with Degenerations and Singularities. De Gruyter Series in Nonlinear Analysis and Applications 5 Walter de Gruyter, Berlin (1997).
MR 1460729 |
Zbl 0894.35002
[4] Edelstein-Keshet, L.:
Mathematical Models in Biology. The Random House/Birkhäuser Mathematics Series Random House, New York (1988).
MR 1010228 |
Zbl 0674.92001
[6] Eisner, J., Kučera, M.:
Spatial patterning in reaction-diffusion systems with nonstandard boundary conditions. Operator Theory and Its Applications Proc. of the Int. Conf., Winnipeg, Canada, 1998 Fields Inst. Commun. 25, American Mathematical Society, Providence 239-256 (2000).
MR 1759546 |
Zbl 0969.35019
[9] Eisner, J., Kučera, M., Väth, M.:
Global bifurcation of a reaction-diffusion system with inclusions. Z. Anal. Anwend. 28 (2009), 373-409.
DOI 10.4171/ZAA/1390 |
MR 2550696
[12] Fučík, S., Kufner, A.:
Nonlinear Differential Equations. Studies in Applied Mechanics 2 Elsevier Scientific Publishing Company, Amsterdam (1980).
MR 0558764
[13] Jones, D. S., Sleeman, B. D.:
Differential Equations and Mathematical Biology. Chapman & Hall/CRC Mathematical Biology and Medicine Series Chapman & Hall/CRC, Boca Raton (2003).
MR 1967145 |
Zbl 1020.92001
[14] Kučera, M.:
Stability and bifurcation problems for reaction-diffusion systems with unilateral conditions. Differential Equations and Their Applications Equadiff 6, Proc. 6th Int. Conf. Brno, 1985 Lect. Notes Math. 1192 (1986), 227-234.
DOI 10.1007/BFb0076074 |
MR 0877129 |
Zbl 0643.35050
[16] Kučera, M., Recke, L., Eisner, J.:
Smooth bifurcation for variational inequalities and reaction-diffusion systems. Progress in Analysis. Vol. I, II Proc. of the 3rd Int. Congress of the Int. Society for Analysis, Its Applications and Computation, Berlin, 2001 World Sci. Publ., River Edge (2003), 1125-1133.
MR 2032793
[18] Mimura, M., Nishiura, Y., Yamaguti, M.:
Some diffusive prey and predator systems and their bifurcation problems. Bifurcation Theory and Applications in Scientific Disciplines, Pap. Conf., New York, 1977 Ann. New York Acad. Sci. 316 (1979), 490-510.
DOI 10.1111/j.1749-6632.1979.tb29492.x |
MR 0556853 |
Zbl 0437.92027
[20] Nishiura, Y.:
Global structure of bifurcating solutions of some reaction-diffusion systems and their stability problem. Computing Methods in Applied Sciences and Engineering V Proc. 5th Int. Symp., Versailles, 1981 North Holland, Amsterdam (1982), 185-204.
MR 0784643 |
Zbl 0505.76103
[21] Quittner, P.:
Bifurcation points and eigenvalues of inequalities of reaction-diffusion type. J. Reine Angew. Math. 380 (1987), 1-13.
MR 0916198 |
Zbl 0617.35053
[23] Väth, M.:
A disc-cutting theorem and two-dimensional bifurcation of a reaction-diffusion system with inclusions. Cubo 10 (2008), 85-100.
MR 2467201 |
Zbl 1169.35352
[25] Väth, M.:
Instability of Turing type for a reaction-diffusion system with unilateral obstacles modeled by variational inequalities. Math. Bohem. 139 (2014), 195-211.
MR 3238834 |
Zbl 1340.35145
[26] Zeidler, E.:
Nonlinear Functional Analysis and Its Applications. III: Variational Methods and Optimization. Springer, New York (1985).
MR 0768749 |
Zbl 0583.47051
[27] Zeidler, E.:
Nonlinear Functional Analysis and Its Applications. IV: Applications to Mathematical Physics. Springer, New York (1988).
MR 0932255 |
Zbl 0648.47036