[1] Chaki, M. C.:
On pseudo symmetric manifolds. An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. 33, 1 (1987), 53–58.
MR 0925690 |
Zbl 0634.53012
[2] Chaki, M. C.:
On pseudo Ricci symmetric manifolds. Bulgar. J. Phys. 15, 6 (1988), 526–531.
MR 1028590 |
Zbl 0689.53011
[3] Chaki, M. C.:
Some theorems on recurrent and Ricci-recurrent spaces. Rend. Sem. Math. Delta Univ. Padova 26 (1956), 168–176.
MR 0084165 |
Zbl 0075.17501
[5] Friedmann, A., Schouten, J. A.:
Uber die Geometrie der halbsymmetrischen Uber-tragung. Math. Zeitschr. 21 (1924), 211–223.
DOI 10.1007/BF01187468 |
MR 1544701
[6] Golab, S.:
On semi-symmetric and quarter-symmetric linear connections. Tensor, N.S. 29 (1975), 249–254.
MR 0383275 |
Zbl 0308.53010
[7] Hayden, H. A.:
Subspaces of a space with torsion. Proc. London Math. Soc. 34 (1932), 27–50.
MR 1576150
[8] Mishra, R. S., Pandey, S. N.:
On quarter-symmetric metric F-connection. Tensor, N.S. 34 (1980), 1–7.
MR 0570556
[11] Mikeš, J., Vanžurová, A., Hinterleitner, I.:
Geodesic mappings and some generalizations. Palacký University, Olomouc, 2009.
MR 2682926 |
Zbl 1222.53002
[12] Mikeš et al., J.:
Differential geometry of special mappings. Palacky University, Olomouc, 2015.
MR 3442960 |
Zbl 1337.53001
[13] Mikeš, J.:
Geodesic mappings of special Riemannian spaces. Topics in differential geometry, Vol. II, Colloq. Math. Soc. János Bolyai, Debrecen 46 (1984), North-Holland, Amsterdam.
MR 0933875
[14] Mikeš, J., Rachůnek, L.:
Torse-forming vector fields in T-semisymmetric Riemannian spaces. In: Steps in Differential Geometry. Proc. Colloq. Diff. Geometry, Univ. Debrecen, Inst. Math. and Inf., Debrecen, 2001, 219–229.
MR 1859300 |
Zbl 0994.53009
[15] Mikeš, J., Rachůnek, L.:
T-semisymmetric spaces and concircular vector fields. Rend. Circ. Mat. Palermo, II. Suppl. 69 (2002), 187–193.
MR 1972434 |
Zbl 1023.53014
[16] Mukhopadhyay, S., Roy, A. K., Barua, B.:
Some properties of a quartersymmetric metric connection on a Riemannian manifold. Soochow J. Math. 17 (1991), 205–211.
MR 1143507
[18] Prakash, N.:
A note on Ricci-recurrent and recurrent spaces. Bulletin of the Calcutta Mathematical Society 54 (1962), 1–7.
MR 0148007
[19] Prasad, B.:
On semi-generalized recurrent manifold. Mathematica Balkanica, New series 14 (2000), 77–82.
MR 1818271 |
Zbl 1229.53020
[20] Prakashs, D. G., Bagewadi, C. S., Basavarajappa, N. S.:
On pseudosymmetric Lorentzian $\alpha $-Sasakian manifolds. IJPAM 48, 1 (2008), 57–65.
MR 2456434
[21] Khan, Q.:
On generalized recurrent Sasakian manifolds. Kyungpook Math. J. 44 (2004), 167–172.
MR 2064777 |
Zbl 1086.53064
[22] Rastogi, S. C.:
On quarter-symmetric connection. C. R. Acad. Sci. Bulgar 31 (1978), 811–814.
MR 0522544
[23] Rastogi, S. C.:
On quarter-symmetric metric connection. Tensor 44 (1987), 133–141.
MR 0944894
[25] Rachůnek, L., Mikeš, J.:
On tensor fields semiconjugated with torse-forming vector fields. Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Math. 44 (2005), 151–160.
MR 2218574 |
Zbl 1092.53016
[26] Sular, S.:
Some properties of a Kenmotsu manifold with a semi symmetric metric connection. Int. Electronic J. Geom. 3 (2010), 24–34.
MR 2639328 |
Zbl 1190.53042
[27] Tamassy, L., Binh, T. Q.:
On weakly symmetric and weakly projective symmetric Riemannian manifolds. Coll. Math. Soc. J. Bolyai 56 (1992), 663–670.
MR 1211691 |
Zbl 0791.53021
[28] Tamassy, L., Binh, T. Q.:
On weak symmetries of Einstein and Sasakian manifolds. Tensor, N.S. 53 (1993), 140–148.
MR 1455411 |
Zbl 0849.53038
[29] Tripathi, M. M.:
On a semi-symmetric metric connection in a Kenmotsu manifold. J. Pure Math. 16 (1999), 67–71.
MR 1768254 |
Zbl 1053.53508
[30] Tripathi, M. M.:
A new connection in a Riemannian manifold. Int. Electronic J. Geom. 1 (2008), 15–24.
MR 2390386 |
Zbl 1135.53007
[31] Tripathi, M. M., Nakkar, N.:
On a semi-symmetric non-metric connection in a Kenmotsu manifold. Bull. Cal. Math. Soc. 16, 4 (2001), 323–330.
MR 1909351
[32] Yano, K.:
On semi-symmetric metric connections. Rev. Roumaine Math. Pures Appl. 15 (1970), 1579–1586.
MR 0275321
[33] Yano, K., Imai, T.:
Quarter-symmetric metric connections and their curvature tensors. Tensor, N.S. 38 (1982), 13–18.
MR 0832619 |
Zbl 0504.53014
[34] Yadav, S., Suthar, D. L.:
Certain derivation on Lorentzian $\alpha $-Sasakian manifolds. Mathematics and Decision Science 12, 2 (2012), 1–6.
MR 2814463
[35] Yamaguchi, S., Matsumoto, M.:
On Ricci-recurrent spaces. Tensor, N.S. 19 (1968), 64–68.
MR 0221430 |
Zbl 0168.19503
[36] Yildiz, A., Murathan, C.:
On Lorentzian $\alpha $-Sasakian manifolds. Kyungpook Math. J. 45 (2005), 95–103.
MR 2142281 |
Zbl 1085.53023
[37] Yildiz, A., Turan, M., Acet, B. F.:
On three dimensional Lorentzian $\alpha $-Sasakian manifolds. Bull. Math. Anal. Appl. 1, 3 (2009), 90–98.
MR 2578119 |
Zbl 1312.53071