[1] Bazaraa, M. S., Shetty, C. M.:
Nonlinear Programming Theory and Algorithms. Wiley and Sons, New York 1990.
MR 0533477 |
Zbl 1140.90040
[2] Beyer, D., Ogier, R.: Tabu learning: A neural network search method for solving nonconvex optimization problems. IEEE Int. Joint Conf. Neural Networks 2 (2000), 953-961.
[3] Bian, W., Xue, X.:
Subgradient-based neural networks for nonsmooth nonconvex optimization problems. IEEE Trans. Neural Networks 20 (2009), 6, 1024-1038.
DOI 10.1109/tnn.2009.2016340 |
MR 2497796
[4] Chicone, C.:
Ordinary Differential Equations with Applications. Second edition. Springer-Verlag, New York 2006.
MR 2224508
[5] Forti, M., Nistri, P., Quincampoix, M.:
Convergence of neural networks for programming problems via a nonsmooth Lojasiewicz inequality. IEEE Trans. Neural Networka 17 (2006), 6, 1471-1486.
DOI 10.1109/tnn.2006.879775
[6] Gao, X. B.:
A novel neural network for nonlinear convex programming problems. IEEE Trans. Neural Network 15 (2004), 613-621.
DOI 10.1109/tnn.2004.824425
[7] Hu, X.:
Neurodynamic optimization: Towards nonconvexity. In: Recurrent Neural Networks ( X. Hu and P. Balasubramaniam, ed.), IN-TECH, 2008, pp. 289-308.
DOI 10.5772/5551
[10] Jeyakumar, V., Srisatkunarajah, S.:
Lagrange multiplier necessary condition for global optimality for non-convex minimization over a quadratic constraint via S-lemma. Optim. Lett. 3 (2009), 23-33.
DOI 10.1007/s11590-008-0088-3 |
MR 2453502
[11] Khalil, H. K.: Nonlinear Systems. Third edition. Prentice Hall, 2002.
[12] Malek, A.:
Application of recurrent neural networks to optimization problems. In: Recurrent Neural Networks ( X. Hu and P. Balasubramaniam, eds.), IN-TECH, 2008, pp. 255-288.
DOI 10.5772/5556
[14] Malek, A., Hosseinipour-Mahani, N., Ezazipour, S.:
Efficient recurrent neural network model for the solution of general nonlinear optimization problems. Optimization Methods and Software 25 (2010), 489-506.
DOI 10.1080/10556780902856743 |
MR 2724153 |
Zbl 1225.90129
[15] Malek, A., Ezazipour, S., Hosseinipour-Mahani, N.:
Double projection neural network for solving pseudomonotone variational inequalities. Fixed Point Theory 12 (2011), 2, 401-418.
MR 2895702
[16] Malek, A., Ezazipour, S., Hosseinipour-Mahani, N.:
Projected dynamical systems and optimization problems. Bull. Iranian Math. Soc. 37 (2011), 2, 81-96.
MR 2890580 |
Zbl 1253.37091
[20] Sun, C. Y., Feng, C. B.:
Neural networks for nonconvex nonlinear programming problems: A switching control approach. In: Lecture Notes in Computer Science 3495, Springer-Verlag, Berlin 2005, pp. 694-699.
DOI 10.1007/11427391_111 |
Zbl 1082.68702
[23] Xia, Y., Feng, G., Wang, J.:
A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equation. Neural Networks 17 (2004), 1003-1015.
DOI 10.1016/j.neunet.2004.05.006
[24] Xia, Y. S., Feng, G., Wang, J.:
A novel recurrent neural network for solving nonlinear optimization problems with inequality constraints. IEEE Trans. Neural Networks 19 (2008), 1340-1353.
DOI 10.1109/tnn.2008.2000273
[25] Xue, X., Bian, W.:
A project neural network for solving degenerate convex quadratic program. Neurocomputing 70 (2007), 2449-2459.
DOI 10.1016/j.neucom.2006.10.038