Previous |  Up |  Next

Article

Keywords:
sum-of-squares polynomial; observer; polynomial system
Summary:
An observer for a system with polynomial nonlinearities is designed. The system is assumed to exhibit a time delay whose value is supposed to be constant and known. The design is carried out using the sum-of-squares method. The key point is defining a suitable Lyapunov-Krasovskii functional. The resulting observer is in form of a polynomial in the observable variables. The results are illustrated by two examples.
References:
[1] Alessandri, A.: Observer design for nonlinear systems by using input-to-state stability. In: Proc. 43rd IEEE Conference on Decision and Control, Bahamas 2004, pp. 3892-3897. DOI 10.1109/cdc.2004.1429345
[2] Ataei, A., Wang, Q.: Non-linear control of an uncertain hypersonic aircraft model using robust sum-of-squares method. IET Control Theory Appl. 6 (2012), 203-215. DOI 10.1049/iet-cta.2011.0143 | MR 2932075
[3] Benabdallah, A.: A separation principle for the stabilization of a class of time delay nonlinear systems. Kybernetika 51 (2015), 99-111. DOI 10.14736/kyb-2015-1-0099 | MR 3333835
[4] Cacace, F., Germani, A., Manes, C.: An observer for a class of nonlinear systems with time varying observation delay. Systems Control Lett. 59 (2010), 305-312. DOI 10.1016/j.sysconle.2010.03.005 | MR 2668922 | Zbl 1191.93016
[5] Dong, Y., Liu, J., Mei, S.: Observer design for a class of nonlinear discrete-time systems with time-delay. Kybernetika 49 (2013), 341-358. MR 3085400 | Zbl 1264.93144
[6] Fridman, E., Dambrine, M.: Control under quantization, saturation and delay: An LMI approach. Automatica 45 (2009), 2258-2264. DOI 10.1016/j.automatica.2009.05.020 | MR 2890785 | Zbl 1179.93089
[7] Fridman, E., Dambrine, M., Yeganefar, N.: On input-to-state stability of systems with time-delay: A matrix inequalities approach. Automatica 44 (2008), 2364-2369. DOI 10.1016/j.automatica.2008.01.012 | MR 2528178 | Zbl 1153.93502
[8] Fridman, E.: Tutorial on Lyapunov-based methods for time-delay systems. European J. Control 20 (2014), 271-283. DOI 10.1016/j.ejcon.2014.10.001 | MR 3283869
[9] Gao, H., Chen, T., Lam, J.: A new delay system approach to network-based control. Automatica 44 (2008), 39-52. DOI 10.1016/j.automatica.2007.04.020 | MR 2530467 | Zbl 1138.93375
[10] Germani, A., Manes, C., Pepe, P.: An asymptotic state observer for a class of nonlinear delay systems. Kybernetika 37 (2001), 459-478. MR 1859096 | Zbl 1265.93029
[11] Gu, K., Kharitonov, V. L., Chen, J.: Stability of Time-delay Systems. Birkhäuser, 2003. DOI 10.1007/978-1-4612-0039-0 | MR 3075002 | Zbl 1039.34067
[12] Huang, W. Ch., Sun, H. F., Zeng, J. P.: Robust control synthesis of polynomial nonlinear systems using sum of squares technique. Acta Automatica Sinica 39 (2013), 799-805. DOI 10.1016/s1874-1029(13)60055-5 | MR 3154438
[13] Ichihara, H.: Observer design for polynomial systems using convex optimization. In: Proc. 46th IEEE Conference on Decision and Control New Orleans 2007, pp. 5309-5314. DOI 10.1109/cdc.2007.4434155
[14] Ichihara, H.: Optimal control for polynomial systems using matrix sum of squares relaxations. IEEE Trans. Automat. Control 54 (2009), 1048-1053. DOI 10.1109/TAC.2009.2017159 | MR 2518120
[15] Ito, H., Pepe, P., Jiang, Z.-P.: Construction of Lyapunov-Krasovskii functionals for networks of iISS retarded systems in small-gain formulation. Automatica 49 (2013), 3246-3257. DOI 10.1016/j.automatica.2013.08.020 | MR 3115794
[16] Jarvis-Wloszek, Z. W.: Lyapunov Based Analysis and Controller Synthesis for Polynomial Systems using Sum-of-Squares Optimization. PhD Thesis, University of California, Berkeley 2003.
[17] Kazantzis, N., Wright, R. A.: Nonlinear observer design in the presence of delayed process output measurements. In: Proc. 2003 American Control Conference, Denver 2003, pp. 2120-2125. DOI 10.1109/acc.2003.1243387
[18] Lam, H. K.: Output-feedback sampled-data polynomial controller for nonlinear systems. Automatica 47 (2011), 2457-2461. DOI 10.1016/j.automatica.2011.08.009 | MR 2886876 | Zbl 1228.93077
[19] Lee, Y. S., Moon, Y. S., Kwon, W. H., Park, P.: Delay-dependent robust $H_{\infty}$ control for uncertain systems with a state delay. Automatica 40, (2004), 65-72. DOI 10.1016/j.automatica.2003.07.004 | MR 2143994 | Zbl 1046.93015
[20] Löfberg, J.: Pre- and post-processing sum-of-squares programs in practice. IEEE Trans. Automat. Control 54, (2009), 1007-1011. DOI 10.1109/tac.2009.2017144 | MR 2518113
[21] Marquez, H.: Nonlinear Control Systems. John Wiley and Sons, New Jersey 2003. Zbl 1037.93003
[22] Márquez, L. A., Moog, C., Villa, M. Velasco: Observability and observers for nonlinear systems with time delay. Kybernetika 38 (2002), 445-456. MR 1937139
[23] Nobuyama, E., Aoyagi, T., Kami, Y.: A Sum of Squares Optimization Approach to Robust Control of Bilinear Systems. In: Recent Advances in Robust Control - Theory and Applications in Robotics and Electromechanics (Dr. Andreas Mueller, ed.), 2011. DOI 10.5772/17576
[24] Papachristodoulou, A., Peet, M. M., Lall, S.: Analysis of polynomial systems with time delays via the sum of squares decomposition. IEEE Trans. Automat. Control 54 (2009), 1061-1067. DOI 10.1109/tac.2009.2017168 | MR 2518122
[25] Park, P. G., Ko, J. W.: Stability and robust stability for systems with a time-varying delay. Automatica 43 (2007), 1855-1858. DOI 10.1016/j.automatica.2007.02.022 | MR 2572899 | Zbl 1120.93043
[26] Peng, C.: Improved delay-dependent stabilisation criteria for discrete systems with a new finite sum inequality. IET Control Theory Appl. 6 (2012), 448-453. DOI 10.1049/iet-cta.2011.0109 | MR 2951877
[27] Prajna, S., Papachristodoulou, A., Wu, F.: Nonlinear control synthesis by sum of squares optimization: A Lyapunov-based approach. In: 5th Asian Control Conference 2004, pp. 157-165.
[28] Rehák, B.: Observer design for a polynomial system with time delays via sum-of-squares. In: 6th IEEE International Conference on Cybernetics and Intelligent Systems, Manila and Pico de Loro 2013, pp. 54-59. DOI 10.1109/iccis.2013.6751578
[29] Rehák, B.: Sum-of-squares based observer design for a polynomial system with unknown time delays. ICCA, Taichung 2014, PP. 479-484. DOI 10.1109/icca.2014.6870967
[30] Sename, O., Briat, C.: $H_\infty$ observer design for uncertain time-delay systems. In: European Control Conference 2007, Kos 2007, pp. 5123-5130.
[31] Subbarao, K., Muralidhar, P. C.: A state observer for LTI systems with delayed outputs: Time-varying delay. American Control Conference, Seattle 2008, pp. 3029-3033. DOI 10.1109/acc.2008.4586957
[32] Teel, A. R., Moreau, L., Nešić, D.: A note on the robustness of input-to-state stability. In: Proc. 40th IEEE Conference on Decision and Control, Orlando 2001, pp. 875-880. DOI 10.1109/cdc.2001.980217
[33] Theis, J.: Sum-of-Squares Applications in Nonlinear Controller Synthesis. PhD Thesis, University of California, Berkeley 2012.
[34] Zhao, G., Wang, J.: Reset observers for linear time-varying delay systems: Delay-dependent approach. J. Franklin Institute 351 (2014), 5133-5147. DOI 10.1016/j.jfranklin.2014.08.011 | MR 3267040 | Zbl 1307.93086
[35] Zhang, X.-M., Han, Q.-L.: Robust $H_\infty$ filtering for a class of uncertain linear systems with time-varying delay. Automatica 44 (2008), 157-166. DOI 10.1016/j.automatica.2007.04.024 | MR 2530479 | Zbl 1138.93058
[36] Zhou, L., Xiao, X., Lu, G.: Observers for a class of nonlinear systems with time delay. Asian J. Control 11 (2009), 688-693. DOI 10.1002/asjc.150 | MR 2791315
Partner of
EuDML logo