[1] Alessandri, A.:
Observer design for nonlinear systems by using input-to-state stability. In: Proc. 43rd IEEE Conference on Decision and Control, Bahamas 2004, pp. 3892-3897.
DOI 10.1109/cdc.2004.1429345
[2] Ataei, A., Wang, Q.:
Non-linear control of an uncertain hypersonic aircraft model using robust sum-of-squares method. IET Control Theory Appl. 6 (2012), 203-215.
DOI 10.1049/iet-cta.2011.0143 |
MR 2932075
[5] Dong, Y., Liu, J., Mei, S.:
Observer design for a class of nonlinear discrete-time systems with time-delay. Kybernetika 49 (2013), 341-358.
MR 3085400 |
Zbl 1264.93144
[10] Germani, A., Manes, C., Pepe, P.:
An asymptotic state observer for a class of nonlinear delay systems. Kybernetika 37 (2001), 459-478.
MR 1859096 |
Zbl 1265.93029
[12] Huang, W. Ch., Sun, H. F., Zeng, J. P.:
Robust control synthesis of polynomial nonlinear systems using sum of squares technique. Acta Automatica Sinica 39 (2013), 799-805.
DOI 10.1016/s1874-1029(13)60055-5 |
MR 3154438
[13] Ichihara, H.:
Observer design for polynomial systems using convex optimization. In: Proc. 46th IEEE Conference on Decision and Control New Orleans 2007, pp. 5309-5314.
DOI 10.1109/cdc.2007.4434155
[14] Ichihara, H.:
Optimal control for polynomial systems using matrix sum of squares relaxations. IEEE Trans. Automat. Control 54 (2009), 1048-1053.
DOI 10.1109/TAC.2009.2017159 |
MR 2518120
[15] Ito, H., Pepe, P., Jiang, Z.-P.:
Construction of Lyapunov-Krasovskii functionals for networks of iISS retarded systems in small-gain formulation. Automatica 49 (2013), 3246-3257.
DOI 10.1016/j.automatica.2013.08.020 |
MR 3115794
[16] Jarvis-Wloszek, Z. W.: Lyapunov Based Analysis and Controller Synthesis for Polynomial Systems using Sum-of-Squares Optimization. PhD Thesis, University of California, Berkeley 2003.
[17] Kazantzis, N., Wright, R. A.:
Nonlinear observer design in the presence of delayed process output measurements. In: Proc. 2003 American Control Conference, Denver 2003, pp. 2120-2125.
DOI 10.1109/acc.2003.1243387
[21] Marquez, H.:
Nonlinear Control Systems. John Wiley and Sons, New Jersey 2003.
Zbl 1037.93003
[22] Márquez, L. A., Moog, C., Villa, M. Velasco:
Observability and observers for nonlinear systems with time delay. Kybernetika 38 (2002), 445-456.
MR 1937139
[23] Nobuyama, E., Aoyagi, T., Kami, Y.:
A Sum of Squares Optimization Approach to Robust Control of Bilinear Systems. In: Recent Advances in Robust Control - Theory and Applications in Robotics and Electromechanics (Dr. Andreas Mueller, ed.), 2011.
DOI 10.5772/17576
[24] Papachristodoulou, A., Peet, M. M., Lall, S.:
Analysis of polynomial systems with time delays via the sum of squares decomposition. IEEE Trans. Automat. Control 54 (2009), 1061-1067.
DOI 10.1109/tac.2009.2017168 |
MR 2518122
[26] Peng, C.:
Improved delay-dependent stabilisation criteria for discrete systems with a new finite sum inequality. IET Control Theory Appl. 6 (2012), 448-453.
DOI 10.1049/iet-cta.2011.0109 |
MR 2951877
[27] Prajna, S., Papachristodoulou, A., Wu, F.: Nonlinear control synthesis by sum of squares optimization: A Lyapunov-based approach. In: 5th Asian Control Conference 2004, pp. 157-165.
[28] Rehák, B.:
Observer design for a polynomial system with time delays via sum-of-squares. In: 6th IEEE International Conference on Cybernetics and Intelligent Systems, Manila and Pico de Loro 2013, pp. 54-59.
DOI 10.1109/iccis.2013.6751578
[29] Rehák, B.:
Sum-of-squares based observer design for a polynomial system with unknown time delays. ICCA, Taichung 2014, PP. 479-484.
DOI 10.1109/icca.2014.6870967
[30] Sename, O., Briat, C.: $H_\infty$ observer design for uncertain time-delay systems. In: European Control Conference 2007, Kos 2007, pp. 5123-5130.
[31] Subbarao, K., Muralidhar, P. C.:
A state observer for LTI systems with delayed outputs: Time-varying delay. American Control Conference, Seattle 2008, pp. 3029-3033.
DOI 10.1109/acc.2008.4586957
[32] Teel, A. R., Moreau, L., Nešić, D.:
A note on the robustness of input-to-state stability. In: Proc. 40th IEEE Conference on Decision and Control, Orlando 2001, pp. 875-880.
DOI 10.1109/cdc.2001.980217
[33] Theis, J.: Sum-of-Squares Applications in Nonlinear Controller Synthesis. PhD Thesis, University of California, Berkeley 2012.
[36] Zhou, L., Xiao, X., Lu, G.:
Observers for a class of nonlinear systems with time delay. Asian J. Control 11 (2009), 688-693.
DOI 10.1002/asjc.150 |
MR 2791315