Previous |  Up |  Next

Article

Keywords:
Nambu bracket; Darboux Theorem; Moser trick; multisymplectic; presymplectic; Weinstein splitting principle
Summary:
It is well-known that the Fundamental Identity (FI) implies that Nambu brackets are decomposable, i.e. given by a determinantal formula. We find a weaker alternative to the FI that allows for non-decomposable Nambu brackets, but still yields a Darboux-like Theorem via a Nambu-type generalization of Weinstein’s splitting principle for Poisson manifolds.
References:
[1] Alekseevsky, D., Guha, P.: On decomposability of Nambu-Poisson tensor. Acta Math. Univ. Comenian. (N.S.) 65 (1996), 1–10. MR 1422290 | Zbl 0864.70012
[2] Awane, A.: $k$-symplectic structures. J. Math. Phys. 33 (1992), 4046–4052. DOI 10.1063/1.529855 | MR 1191763 | Zbl 0781.53024
[3] Baez, J.C., Hoffnung, A.E., Rogers, C.L.: Categorified symplectic geometry and the classical string. Comm. Math. Phys. 293 (2010), 701–725, arXiv:0808.0246. DOI 10.1007/s00220-009-0951-9 | MR 2566161 | Zbl 1192.81208
[4] Bagger, J., Lambert, N.: Modeling multiple M2’s. Phys. Rev. D 75 (2007), 045020, arXiv:hep-th/0611108. DOI 10.1103/PhysRevD.75.045020 | MR 2304429
[5] Cantrijn, F., Ibort, A., de León, M.: On the geometry of multisymplectic manifolds. J. Austral. Math. Soc. Ser. A 66 (1999), 303–330. DOI 10.1017/S1446788700036636 | MR 1694063 | Zbl 0968.53052
[6] de Azcárraga, J.A., Izquierdo, J.M.: $n$-ary Algebras: a Review with Applications. J. Phys. A 43 (2010), 293001, arXiv:1005.1028. DOI 10.1088/1751-8113/43/29/293001 | Zbl 1202.81187
[7] de Azcárraga, J.A., Perelomov, A.M., Bueno, J.C. Pérez: New generalized Poisson structures. J. Phys. A 29 (1996), 151–157, arXiv:q-alg/9601007. DOI 10.1088/0305-4470/29/7/001 | MR 1395505
[8] Dito, G., Flato, M., Sternheimer, D., Takhtajan, L.: Deformation quantization and Nambu mechanics. Comm. Math. Phys. 183 (1997), 1–22, arXiv:hep-th/9602016. DOI 10.1007/BF02509794 | MR 1461949 | Zbl 0877.70012
[9] Filippov, V.T.: $n$-Lie algebras. Siberian Math. J. 26 (1985), 879–891. DOI 10.1007/BF00969110 | MR 0816511 | Zbl 0594.17002
[10] Gautheron, Ph.: Some remarks concerning Nambu mechanics. Lett. Math. Phys. 37 (1996), 103–116. MR 1392151 | Zbl 0849.70014
[11] Gustavsson, A.: Algebraic structures on parallel M2-branes. Nuclear Phys. B 811 (2009), 66–76, arXiv:0709.1260. MR 2492260 | Zbl 1194.81205
[12] Martin, G.: A Darboux theorem for multi-symplectic manifolds. Lett. Math. Phys. 16 (1988), 133–138. DOI 10.1007/BF00402020 | MR 0962194 | Zbl 0676.58024
[13] Michor, P.W., Vaisman, I.: A note on $n$-ary Poisson brackets. Rend. Circ. Mat. Palermo (2) Suppl. 63 (2000), 165–172, arXiv:math/9901117. MR 1758092 | Zbl 0986.53035
[14] Moser, J.: On the volume elements on a manifold. Trans. Amer. Math. Soc. 120 (1965), 286–294. DOI 10.1090/S0002-9947-1965-0182927-5 | MR 0182927 | Zbl 0141.19407
[15] Nakanishi, N.: On Nambu-Poisson manifolds. Rev. Math. Phys. 10 (1998), 499–510. MR 1629719 | Zbl 0929.70015
[16] Nambu, Y.: Generalized Hamiltonian dynamics. Phys. Rev. D 7 (1973), 2405–2412. DOI 10.1103/PhysRevD.7.2405 | MR 0455611 | Zbl 1027.70503
[17] Pandit, S.A., Gangal, A.D.: Momentum maps and Noether theorem for generalized Nambu mechanics. arXiv:math/9908023.
[18] Pandit, S.A., Gangal, A.D.: On generalized Nambu mechanics. J. Phys. A 31 (1998), 2899–2912, arXiv:chao-dyn/9609015. DOI 10.1088/0305-4470/31/12/014 | MR 1625155 | Zbl 0924.70018
[19] Sahoo, D., Valsakumar, M.C.: Nambu mechanics and its quantization. Phys. Rev. A 46 (1992), 4410–4412. DOI 10.1103/PhysRevA.46.4410
[20] Takhtajan, L.: On foundation of the generalized Nambu mechanics. Comm. Math. Phys. 160 (1994), 295–315, arXiv:hep-th/9301111. DOI 10.1007/BF02103278 | MR 1262199 | Zbl 0808.70015
[21] Vaisman, I.: A survey on Nambu-Poisson brackets. Acta Math. Univ. Comenian. (N.S.) 68 (1999), 213–241, arXiv:math/9901047. MR 1757790 | Zbl 0953.53023
[22] Weinstein, A.: The local structure of Poisson manifolds. J. Differential Geom. 18 (1983), 523–557. MR 0723816 | Zbl 0524.58011
[23] Weitzenböck, R.: Invariantentheorie. P. Noordhoff, Groningen, 1923.
Partner of
EuDML logo