Previous |  Up |  Next

Article

Keywords:
oscillation; quasilinear functional differential equation; delayed argument; advanced argument
Summary:
We study oscillatory behavior of a class of fourth-order quasilinear differential equations without imposing restrictive conditions on the deviated argument. This allows applications to functional differential equations with delayed and advanced arguments, and not only these. New theorems are based on a thorough analysis of possible behavior of nonoscillatory solutions; they complement and improve a number of results reported in the literature. Three illustrative examples are presented.
References:
[1] Agarwal, R. P., Bohner, M., Li, W.-T.: Nonoscillation and Oscillation: Theory for Functional Differential Equations. Monographs and Textbooks in Pure and Applied Mathematics 267 Marcel Dekker, New York (2004). MR 2084730 | Zbl 1068.34002
[2] Agarwal, R. P., Grace, S. R., Manojlovic, J. V.: Oscillation criteria for certain fourth order nonlinear functional differential equations. Math. Comput. Modelling 44 163-187 (2006). DOI 10.1016/j.mcm.2005.11.015 | MR 2230441 | Zbl 1137.34031
[3] Agarwal, R. P., Grace, S. R., O'Regan, D.: Oscillation Theory for Difference and Functional Differential Equations. Kluwer Academic Publishers, Dordrecht (2000). MR 1774732 | Zbl 0954.34002
[4] Agarwal, R. P., Grace, S. R., O'Regan, D.: Oscillation criteria for certain $n$th order differential equations with deviating arguments. J. Math. Anal. Appl. 262 601-622 (2001). DOI 10.1006/jmaa.2001.7571 | MR 1859327 | Zbl 0997.34060
[5] Agarwal, R. P., Grace, S. R., O'Regan, D.: Oscillation of certain fourth-order functional differential equations. Ukr. Mat. J. 59 315-342 (2007). DOI 10.1007/s11253-007-0021-4 | MR 2359966 | Zbl 1150.34545
[6] Bartušek, M., Cecchi, M., Došlá, Z., Marini, M.: Fourth-order differential equation with deviating argument. Abstr. Appl. Anal. 2012 Article ID 185242, 17 pages (2012). MR 2898056 | Zbl 1244.34089
[7] Grace, S. R., Agarwal, R. P., Graef, J. R.: Oscillation theorems for fourth order functional differential equations. J. Appl. Math. Comput. 30 75-88 (2009). DOI 10.1007/s12190-008-0158-9 | MR 2496603 | Zbl 1188.34085
[8] Grace, S. R., Agarwal, R. P., Pinelas, S.: On the oscillations of fourth order functional differential equations. Commun. Appl. Anal. 13 93-103 (2009). MR 2514990 | Zbl 1180.34064
[9] Hasanbulli, M., Rogovchenko, Yu. V.: Asymptotic behavior of nonoscillatory solutions to $n$-th order nonlinear neutral differential equations. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 69 1208-1218 (2008). DOI 10.1016/j.na.2007.06.025 | MR 2426686 | Zbl 1157.34057
[10] Kamo, K.-I., Usami, H.: Oscillation theorems for fourth-order quasilinear ordinary differential equations. Stud. Sci. Math. Hung. 39 385-406 (2002). MR 1956947 | Zbl 1026.34054
[11] Kamo, K., Usami, H.: Nonlinear oscillations of fourth order quasilinear ordinary differential equations. Acta Math. Hung. 132 207-222 (2011). DOI 10.1007/s10474-011-0127-x | MR 2818904 | Zbl 1249.34111
[12] Kiguradze, I. T., Chanturia, T. A.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Mathematics and Its Applications (Soviet Series) 89 Kluwer Academic Publishers, Dordrecht (1993), translated from the Russian. DOI 10.1007/978-94-011-1808-8 | MR 1220223 | Zbl 0782.34002
[13] Kitamura, Y., Kusano, T.: Oscillation of first-order nonlinear differential equations with deviating arguments. Proc. Am. Math. Soc. 78 64-68 (1980). DOI 10.1090/S0002-9939-1980-0548086-5 | MR 0548086 | Zbl 0433.34051
[14] Kusano, T., Manojlović, J., Tanigawa, T.: Sharp oscillation criteria for a class of fourth order nonlinear differential equations. Rocky Mt. J. Math. 41 249-274 (2011). DOI 10.1216/RMJ-2011-41-1-249 | MR 2845944 | Zbl 1232.34053
[15] Ladde, G. S., Lakshmikantham, V., Zhang, B. G.: Oscillation Theory of Differential Equations with Deviating Arguments. Monographs and Textbooks in Pure and Applied Mathematics 110 Marcel Dekker, New York (1987). MR 1017244 | Zbl 0832.34071
[16] Li, T., Thandapani, E., Tang, S.: Oscillation theorems for fourth-order delay dynamic equations on time scales. Bull. Math. Anal. Appl. 3 190-199 (2011). MR 2955359 | Zbl 1314.34182
[17] Onose, H.: Forced oscillation for functional differential equations of fourth order. Bull. Fac. Sci., Ibaraki Univ., Ser. A 11 57-63 (1979). DOI 10.5036/bfsiu1968.11.57 | MR 0536902 | Zbl 0416.34064
[18] Onose, H.: Nonlinear oscillation of fourth order functional differential equations. Ann. Mat. Pura Appl. (4) 119 259-272 (1979). DOI 10.1007/BF02413181 | MR 0551229 | Zbl 0412.34067
[19] Philos, Ch.: A new criterion for the oscillatory and asymptotic behavior of delay differential equations. Bull. Acad. Pol. Sci., Sér. Sci. Math. 29 367-370 (1981). MR 0640329 | Zbl 0482.34056
[20] Wu, F.: Existence of eventually positive solutions of fourth order quasilinear differential equations. J. Math. Anal. Appl. 389 632-646 (2012). DOI 10.1016/j.jmaa.2011.11.061 | MR 2876527 | Zbl 1244.34054
[21] Zhang, C., Agarwal, R. P., Bohner, M., Li, T.: New results for oscillatory behavior of even-order half-linear delay differential equations. Appl. Math. Lett. 26 179-183 (2013). DOI 10.1016/j.aml.2012.08.004 | MR 2994606 | Zbl 1263.34094
[22] Zhang, C., Li, T., Agarwal, R. P., Bohner, M.: Oscillation results for fourth-order nonlinear dynamic equations. Appl. Math. Lett. 25 2058-2065 (2012). DOI 10.1016/j.aml.2012.04.018 | MR 2967789 | Zbl 1260.34168
[23] Zhang, C., Li, T., Sun, B., Thandapani, E.: On the oscillation of higher-order half-linear delay differential equations. Appl. Math. Lett. 24 1618-1621 (2011). DOI 10.1016/j.aml.2011.04.015 | MR 2803721 | Zbl 1223.34095
Partner of
EuDML logo