[1] Alò, R. A., Shapiro, H. L.:
Normal Topological Spaces. Cambridge Tracts in Mathematics 65 Cambridge University Press, Cambridge (1974).
MR 2483377 |
Zbl 0282.54005
[7] Gauld, D. B., Mršević, M., Reilly, I. L., Vamanamurthy, M. K.:
Continuity properties of functions. Topology, Theory and Applications, ed. Á. Császár, 5th Colloq., Eger, Hungary, 1983, Colloq. Math. Soc. János Bolyai 41 North-Holland, Amsterdam; János Bolyai Mathematical Society, Budapest (1985), 311-322.
MR 0863913 |
Zbl 0605.54011
[9] Kohli, J. K.:
Change of topology, characterizations and product theorems for semilocally {$P$}-spaces. Houston J. Math. 17 (1991), 335-350.
MR 1126598 |
Zbl 0781.54007
[10] Kohli, J. K.:
A framework including the theories of continuous functions and certain noncontinuous functions. Note Mat. 10 (1990), 37-45.
MR 1165488
[15] Kohli, J. K., Kumar, R.:
$z$-supercontinuous functions. Indian J. Pure Appl. Math. 33 (2002), 1097-1108.
MR 1921976 |
Zbl 1010.54012
[16] Kohli, J. K., Singh, D.:
$D_\delta$-supercontinuous functions. Indian J. Pure Appl. Math. 34 (2003), 1089-1100.
MR 2001098 |
Zbl 1036.54003
[17] Kohli, J. K., Singh, D.:
$D$-supercontinuous functions. Indian J. Pure Appl. Math. 32 (2001), 227-235.
MR 1820863 |
Zbl 0977.54011
[18] Kohli, J. K., Singh, D., Aggarwal, J.:
$R$-supercontinuous functions. Demonstr. Math. (electronic only) 43 (2010), 703-723.
MR 2683367 |
Zbl 1217.54016
[20] Kohli, J. K., Singh, D., Kumar, R.:
Some properties of strongly {$\theta$}-continuous functions. Bull. Calcutta Math. Soc. 100 (2008), 185-196.
MR 2437543
[21] Kohli, J. K., Tyagi, B. K., Singh, D., Aggarwal, J.:
$R_\delta$-supercontinuous functions. Demonstr. Math. (electronic only) 47 (2014), 433-448.
MR 3217739 |
Zbl 1300.54022
[23] Long, P. E., Herrington, L. L.:
Strongly $\theta $-continuous functions. J. Korean Math. Soc. 18 (1981), 21-28.
MR 0635376 |
Zbl 0478.54006
[25] Munshi, B. M., Bassan, D. S.:
Super-continuous mappings. Indian J. Pure Appl. Math. 13 (1982), 229-236.
MR 0651833 |
Zbl 0483.54007
[26] Noiri, T.:
Supercontinuity and some strong forms of continuity. Indian J. Pure Appl. Math. 15 (1984), 241-250.
MR 0737147
[28] Reilly, I. L., Vamanamurthy, M. K.:
On super-continuous mappings. Indian J. Pure Appl. Math. 14 (1983), 767-772.
MR 0717860 |
Zbl 0509.54007
[31] Singh, D.:
$D^*$-supercontinuous functions. Bull. Calcutta Math. Soc. 94 (2002), 67-76.
MR 1928464 |
Zbl 1012.54016
[32] Singh, D., Kohli, J. K.: Separation axioms between functionally regular spaces and $R_{0}$-spaces. Submitted to Sci. Stud. Res., Ser. Math. Inform.
[34] L. A. Steen, J. A. Seebach, Jr.:
Counterexamples in Topology. Springer, New York (1978).
MR 0507446 |
Zbl 0386.54001
[35] Tyagi, B. K., Kohli, J. K., Singh, D.:
$R_ cl$-supercontinuous functions. Demonstr. Math. (electronic only) 46 (2013), 229-244.
MR 3075511 |
Zbl 1272.54015
[36] Est, W. T. van, Freudenthal, H.:
Trennung durch stetige Funktionen in topologischen Räumen. Nederl. Akad. Wet., Proc., Indagationes Math. 13, Ser. A 54 German (1951), 359-368.
DOI 10.1016/S1385-7258(51)50051-3 |
MR 0046033
[37] Veličko, N. V.:
$H$-closed topological spaces. Transl., Ser. 2, Am. Math. Soc. 78 (1968), 103-118 translation from Russian original, Mat. Sb. (N.S.), 70 98-112 (1966).
MR 0198418