Title:
|
$\alpha $-ideals in $0$-distributive posets (English) |
Author:
|
Mokbel, Khalid A. |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
140 |
Issue:
|
3 |
Year:
|
2015 |
Pages:
|
319-328 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The concept of $\alpha $-ideals in posets is introduced. Several properties of $\alpha $-ideals in $0$-distributive posets are studied. Characterization of prime ideals to be $\alpha $-ideals in $0$-distributive posets is obtained in terms of minimality of ideals. Further, it is proved that if a prime ideal $I$ of a $0$-distributive poset is non-dense, then $I$ is an $\alpha $-ideal. Moreover, it is shown that the set of all $\alpha $-ideals $\alpha \mathop {\rm Id}(P)$ of a poset $P$ with $0$ forms a complete lattice. A result analogous to separation theorem for finite $0$-distributive posets is obtained with respect to prime $\alpha $-ideals. Some counterexamples are also given. (English) |
Keyword:
|
$0$-distributive poset |
Keyword:
|
ideal |
Keyword:
|
$\alpha $-ideal |
Keyword:
|
prime ideal |
Keyword:
|
non-dense ideal |
Keyword:
|
minimal ideal |
Keyword:
|
annihilator ideal |
MSC:
|
06A06 |
MSC:
|
06A75 |
idZBL:
|
Zbl 06486942 |
idMR:
|
MR3397260 |
DOI:
|
10.21136/MB.2015.144398 |
. |
Date available:
|
2015-09-03T10:52:59Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144398 |
. |
Reference:
|
[1] Balasubramani, P., Venkatanarasimhan, P. V.: Characterizations of the $0$-distributive lattice.Indian J. Pure Appl. Math. 32 (2001), 315-324. Zbl 0984.06007, MR 1826759 |
Reference:
|
[2] Cornish, W. H.: Annulets and $\alpha$-ideals in a distributive lattice.J. Aust. Math. Soc. 15 (1973), 70-77. Zbl 0274.06008, MR 0344170, 10.1017/S1446788700012775 |
Reference:
|
[3] Grätzer, G.: General Lattice Theory. New appendices by the author with B. A. Davey et al.Birkhäuser Basel (1998). MR 1670580 |
Reference:
|
[4] Grillet, P. A., Varlet, J. C.: Complementedness conditions in lattices.Bull. Soc. R. Sci. Liège (electronic only) 36 (1967), 628-642. Zbl 0157.34202, MR 0228389 |
Reference:
|
[5] Halaš, R.: Characterization of distributive sets by generalized annihilators.Arch. Math., Brno 30 (1994), 25-27. MR 1282110 |
Reference:
|
[6] Halaš, R., Rachůnek, J.: Polars and prime ideals in ordered sets.Discuss. Math., Algebra Stoch. Methods 15 (1995), 43-59. MR 1369627 |
Reference:
|
[7] Jayaram, C.: Prime {$\alpha$}-ideals in an {$0$}-distributive lattice.Indian J. Pure Appl. Math. 17 (1986), 331-337. MR 0835346 |
Reference:
|
[8] Joshi, V. V., Mundlik, N.: Prime ideals in $0$-distributive posets.Cent. Eur. J. Math. 11 (2013), 940-955. Zbl 1288.06002, MR 3032342 |
Reference:
|
[9] Joshi, V. V., Waphare, B. N.: Characterizations of $0$-distributive posets.Math. Bohem. 130 (2005), 73-80. Zbl 1112.06001, MR 2128360 |
Reference:
|
[10] Kharat, V. S., Mokbel, K. A.: Semiprime ideals and separation theorems for posets.Order 25 (2008), 195-210. Zbl 1155.06003, MR 2448404, 10.1007/s11083-008-9087-3 |
Reference:
|
[11] Pawar, Y. S., Khopade, S. S.: $\alpha$-ideals and annihilator ideals in $0$-distributive lattices.Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 49 (2010), 63-74. Zbl 1245.06023, MR 2797524 |
Reference:
|
[12] Pawar, Y. S., Mane, D. N.: $\alpha$-ideals in $0$-distributive semilattices and $0$-distributive lattices.Indian J. Pure Appl. Math. 24 (1993), 435-443. Zbl 0789.06005, MR 1234802 |
. |