Previous |  Up |  Next

Article

Title: $\alpha $-ideals in $0$-distributive posets (English)
Author: Mokbel, Khalid A.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 140
Issue: 3
Year: 2015
Pages: 319-328
Summary lang: English
.
Category: math
.
Summary: The concept of $\alpha $-ideals in posets is introduced. Several properties of $\alpha $-ideals in $0$-distributive posets are studied. Characterization of prime ideals to be $\alpha $-ideals in $0$-distributive posets is obtained in terms of minimality of ideals. Further, it is proved that if a prime ideal $I$ of a $0$-distributive poset is non-dense, then $I$ is an $\alpha $-ideal. Moreover, it is shown that the set of all $\alpha $-ideals $\alpha \mathop {\rm Id}(P)$ of a poset $P$ with $0$ forms a complete lattice. A result analogous to separation theorem for finite $0$-distributive posets is obtained with respect to prime $\alpha $-ideals. Some counterexamples are also given. (English)
Keyword: $0$-distributive poset
Keyword: ideal
Keyword: $\alpha $-ideal
Keyword: prime ideal
Keyword: non-dense ideal
Keyword: minimal ideal
Keyword: annihilator ideal
MSC: 06A06
MSC: 06A75
idZBL: Zbl 06486942
idMR: MR3397260
DOI: 10.21136/MB.2015.144398
.
Date available: 2015-09-03T10:52:59Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/144398
.
Reference: [1] Balasubramani, P., Venkatanarasimhan, P. V.: Characterizations of the $0$-distributive lattice.Indian J. Pure Appl. Math. 32 (2001), 315-324. Zbl 0984.06007, MR 1826759
Reference: [2] Cornish, W. H.: Annulets and $\alpha$-ideals in a distributive lattice.J. Aust. Math. Soc. 15 (1973), 70-77. Zbl 0274.06008, MR 0344170, 10.1017/S1446788700012775
Reference: [3] Grätzer, G.: General Lattice Theory. New appendices by the author with B. A. Davey et al.Birkhäuser Basel (1998). MR 1670580
Reference: [4] Grillet, P. A., Varlet, J. C.: Complementedness conditions in lattices.Bull. Soc. R. Sci. Liège (electronic only) 36 (1967), 628-642. Zbl 0157.34202, MR 0228389
Reference: [5] Halaš, R.: Characterization of distributive sets by generalized annihilators.Arch. Math., Brno 30 (1994), 25-27. MR 1282110
Reference: [6] Halaš, R., Rachůnek, J.: Polars and prime ideals in ordered sets.Discuss. Math., Algebra Stoch. Methods 15 (1995), 43-59. MR 1369627
Reference: [7] Jayaram, C.: Prime {$\alpha$}-ideals in an {$0$}-distributive lattice.Indian J. Pure Appl. Math. 17 (1986), 331-337. MR 0835346
Reference: [8] Joshi, V. V., Mundlik, N.: Prime ideals in $0$-distributive posets.Cent. Eur. J. Math. 11 (2013), 940-955. Zbl 1288.06002, MR 3032342
Reference: [9] Joshi, V. V., Waphare, B. N.: Characterizations of $0$-distributive posets.Math. Bohem. 130 (2005), 73-80. Zbl 1112.06001, MR 2128360
Reference: [10] Kharat, V. S., Mokbel, K. A.: Semiprime ideals and separation theorems for posets.Order 25 (2008), 195-210. Zbl 1155.06003, MR 2448404, 10.1007/s11083-008-9087-3
Reference: [11] Pawar, Y. S., Khopade, S. S.: $\alpha$-ideals and annihilator ideals in $0$-distributive lattices.Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 49 (2010), 63-74. Zbl 1245.06023, MR 2797524
Reference: [12] Pawar, Y. S., Mane, D. N.: $\alpha$-ideals in $0$-distributive semilattices and $0$-distributive lattices.Indian J. Pure Appl. Math. 24 (1993), 435-443. Zbl 0789.06005, MR 1234802
.

Files

Files Size Format View
MathBohem_140-2015-3_5.pdf 261.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo