[1] Agarwal, R. P., Bohner, M., Grace, S. R., O'Regan, D.:
Discrete Oscillation Theory. Hindawi Publishing Corporation New York (2005).
MR 2179948 |
Zbl 1084.39001
[2] Baštinec, J., Berezansky, L., Diblík, J., Šmarda, Z.:
A final result on the oscillation of solutions of the linear discrete delayed equation $\Delta x(n)=-p(n)x(n-k)$ with a positive coefficient. Abstr. Appl. Anal. 2011 (2011), Article No. 586328, 28 pages.
MR 2824906 |
Zbl 1223.39008
[3] Baštinec, J., Diblík, J.:
Remark on positive solutions of discrete equation $\Delta u(k+n)=$ $-p(k)u(k)$. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods (electronic only) 63 (2005), e2145--e2151.
DOI 10.1016/j.na.2005.01.007 |
Zbl 1224.39002
[5] Berezansky, L., Braverman, E.:
On existence of positive solutions for linear difference equations with several delays. Adv. Dyn. Syst. Appl. 1 (2006), 29-47.
MR 2287633 |
Zbl 1124.39002
[7] Chatzarakis, G. E., Manojlovic, J., Pinelas, S., Stavroulakis, I. P.:
Oscillation criteria of difference equations with several deviating arguments. Yokohama Math. J. 60 (2014), 13-31.
MR 3328615 |
Zbl 1318.39011
[8] Chatzarakis, G. E., Philos, C. G., Stavroulakis, I. P.:
An oscillation criterion for linear difference equations with general delay argument. Port. Math. (N.S.) 66 (2009), 513-533.
DOI 10.4171/PM/1853 |
MR 2567680 |
Zbl 1186.39010
[10] Erbe, L. H., Zhang, B. G.:
Oscillation of discrete analogues of delay equations. Differ. Integral Equ. 2 (1989), 300-309.
MR 0983682 |
Zbl 0723.39004
[11] Fukagai, N., Kusano, T.:
Oscillation theory of first order functional-differential equations with deviating arguments. Ann. Mat. Pura Appl. (4) 136 (1984), 95-117.
MR 0765918 |
Zbl 0552.34062
[12] Grammatikopoulos, M. K., Koplatadze, R., Stavroulakis, I. P.:
On the oscillation of solutions of first-order differential equations with retarded arguments. Georgian Math. J. 10 (2003), 63-76.
DOI 10.1515/GMJ.2003.63 |
MR 1990688 |
Zbl 1051.34051
[13] Győri, I., Ladas, G.:
Oscillation Theory of Delay Differential Equations: With Applications. Oxford Mathematical Monographs Clarendon Press, Oxford (1991).
MR 1168471 |
Zbl 0780.34048
[14] Lakshmikantham, V., Trigiante, D.:
Theory of Difference Equations: Numerical Methods and Applications. Mathematics in Science and Engineering 181 Academic Press, Boston (1988).
MR 0939611 |
Zbl 0683.39001
[15] Li, X., Zhu, D.:
Oscillation of advanced difference equations with variable coefficients. Ann. Differ. Equations 18 (2002), 254-263.
MR 1940383 |
Zbl 1010.39001
[16] Luo, X. N., Zhou, Y., Li, C. F.:
Oscillation of a nonlinear difference equation with several delays. Math. Bohem. 128 (2003), 309-317.
MR 2012607 |
Zbl 1055.39015
[21] Yan, W., Meng, Q., Yan, J.:
Oscillation criteria for difference equation of variable delays. Dyn. Contin. Discrete Impuls. Syst. Ser. A, Math. Anal. 13A (2006), 641-647.
MR 2219618