[1] Almond, R. G., Mislevy, R. J., Steinberg, L., Yan, D., Williamson, D.:
Bayesian Networks in Educational Assessment. Statistics for Social and Behavioral Sciences. Springer, New York 2015.
DOI 10.1007/978-1-4939-2125-6 |
MR 3328529
[2] Apt{é}, Ch., Damerau, F., Weiss, S. M.:
Automated learning of decision rules for text categorization. ACM Trans. Inform. Syst. 12 (1994), 3, 233-251.
DOI 10.1145/183422.183423
[4] Díez, F. J.:
Parameter adjustment in Bayes networks. The generalized noisy OR gate. In: Proc. Ninth Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann 1993, pp. 99-105.
DOI 10.1016/b978-1-4832-1451-1.50016-0
[5] Díez, F. J., Druzdzel, M. J.: Canonical Probabilistic Models for Knowledge Engineering. Technical Report CISIAD-06-01, UNED, Madrid 2006.
[6] Díez, F. J., Galán, S. F.:
An efficient factorization for the noisy MAX. Int. J. Intell. Syst. 18 (2003), 165-177.
DOI 10.1002/int.10080
[7] Heckerman, D., Breese, J.:
A new look at causal independence. In: Proc. Tenth Conference on Uncertainty in Artificial Intelligence, Seattle, Morgan Kaufmann 1994, pp. 286-292.
DOI 10.1016/b978-1-55860-332-5.50041-9
[8] Henrion, M.: Practical issues in constructing a Bayes' Belief Network. In: Proc. Third Conference Annual Conference on Uncertainty in Artificial Intelligence, AUAI Press 1987, pp. 132-139.
[10] McCullagh, P.:
Regression models for ordinal data. J. Roy. Statist. Soc. Series B (Methodological) 42 (1980), 109-142.
MR 0583347 |
Zbl 0483.62056
[12] Miller, R. A., Fasarie, F. E., Myers, J. D.: Quick medical reference (QMR) for diagnostic assistance. Medical Comput. 3 (1986), 34-48.
[14] Pearl, J.:
Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufman, San Mateo 1988.
MR 0965765 |
Zbl 0746.68089
[15] Team, R Development Core: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna 2008.
[17] Samejima, F.: Estimation of Latent Ability Using a Response Pattern of Raded Scores (Psychometric Monograph No. 17). Psychometric Society, Richmond 1969.
[18] Saul, L. K., Jaakkola, T., Jordan, M. I.:
Mean field theory for sigmoid belief networks. J. Artif. Intell. Res. 4 (1996), 61-76.
Zbl 0900.68379
[19] Savický, P., Vomlel, J.:
Exploiting tensor rank-one decomposition in probabilistic inference. Kybernetika 43 (2007), 5, 747-764.
MR 2376335 |
Zbl 1148.68539
[20] Srinivas, S.:
A generalization of the noisy-or model. In: Proc. Ninth Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann 1993, pp. 208-215.
DOI 10.1016/b978-1-4832-1451-1.50030-5
[22] Vomlel, J.: A generalization of the noisy-or model to multivalued parent variables. In: Proc. 16th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty 2013, pp. 19-27.
[23] Vomlel, J., Tichavský, P.:
On tensor rank of conditional probability tables in Bayesian networks. A preprint arXiv:1409.6287, 2014.
MR 3178417
[24] Zagorecki, A., Druzdzel, M. J.:
Knowledge engineering for Bayesian networks: How common are noisy-MAX distributions in practice?. IEEE Trans. Systems, Man, and Cybernetics: Systems 43 (2013) 186-195.
DOI 10.1109/tsmca.2012.2189880