[1] Ademola, A. T., Arawomo, P. O.:
On the asymptotic behaviour of solutions of certain differential equations of the third order. Proyecciones Journal of Mathematics 33, 1 (2014), 111–132.
MR 3162791 |
Zbl 1302.34076
[2] Ademola, A. T., Arawomo, P. O.:
Generalization of some qualitative behaviour of solutions of third order nonlinear differential equations. Differential Equations and Control Processes N 1 (2012), 97–113.
MR 2977146
[3] Ademola, A. T., Arawomo, P. O.:
Asymptotic behaviour of solutions of third order nonlinear differential equations. Acta Univ. Sapientiae, Mathematica 3, 2 (2011), 197–211.
MR 2915835 |
Zbl 1260.34100
[5] Ademola, A. T., Arawomo, P. O.:
Boundedness and stability of solutions of some nonlinear differential equations of the third-order. The Pacific Journal of Science and Technology 10, 2 (2009), 187–193.
MR 2881138
[6] Ademola, A. T., Arawomo, P. O.:
Stability and ultimate boundedness of solutions to certain third-order differential equations. Applied Mathematics E-Notes 10 (2010), 61–69.
MR 2606838 |
Zbl 1194.34103
[7] Ademola, A. T., Arawomo, P. O.:
Stability and uniform ultimate boundedness of solutions of a third-order differential equation. International Journal of Applied Mathematics 23, 1 (2010), 11–22.
MR 2643291 |
Zbl 1201.34054
[8] Ademola, A. T., Arawomo, P. O.:
Stability and uniform ultimate boundedness of solutions of some third order differential equations. Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 27 (2011), 51–59.
MR 2813591 |
Zbl 1240.34259
[9] Ademola, A. T., Arawomo, P. O.:
Stability, boundedness and asymptotic behaviour of solutions of certain nonlinear differential equations of the third order. Kragujevac J. Math. 35, 3 (2011), 431–445.
MR 2881138 |
Zbl 1265.34191
[10] Ademola, A. T., Ogundiran, M. O., Arawomo, P. O., Adesina, O. A.:
Boundedness results for a certain third-order nonlinear differential equations. Appl. Math. Comput. 216 (2010), 3044–3049.
DOI 10.1016/j.amc.2010.04.022 |
MR 2653118
[11] Afuwape, A. U., Adesina, O. A.:
On the bounds for mean-values of solutions to certain third-order nonlinear differential equations. Fasciculi Mathematici 36 (2005), 5–14.
MR 2223637 |
Zbl 1127.34019
[12] Andres, J.:
Boundedness results for solutions of the equation $\dddot{x}+a\ddot{x}+g(x)\dot{x}+h(x)=p(t)$ without the hypothesis $h(x)x\ge 0$ for $|x|>R$. Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 80, 8 (1986), 533–539.
MR 0976947
[13] Antoisewicz, H. A.:
On nonlinear differential equations of the second order with integrable forcing term. J. London Math. Soc. 30 (1955), 64–67.
DOI 10.1112/jlms/s1-30.1.64
[14] Babaev, E. V., Hefferlin, R.: Concept of chemical periodicity: from Mendeleev Table to Molecular Hyper-periodicity patterns. In: Research Studies Press, London, 1996, 24–81.
[15] Bereketoǧlu, H., Györi, I.:
On the boundedness of solutions of a third-order nonlinear differential equation. Dynam. Systems Appl. 6, 2 (1997), 263–270.
MR 1461442
[16] Callahan, J., Cox, D., Hoffman, K., O’Shea, D., Pollatsek, H., Senechal, L., L.: Calculus in Context. The Five College Calculus Project, Five Colleges, 2008.
[17] Chukwu, E. N.:
On boundedness of solutions of third order differential equations. Ann. Mat. Pura. Appl. 104, 4 (1975), 123–149.
DOI 10.1007/BF02417013 |
MR 0377180
[20] Ezeilo, J. O. C.:
A boundedness theorem for a certain third-order differential equation. Proc. London Math. Soc. 13, 3 (1963), 99–124.
MR 0142850 |
Zbl 0116.06902
[23] Mehri, B., Shadman, D.:
Boundedness of solutions of certain third-order differential equation. Math. Inequal. Appl., 4 (1999), 545–549.
MR 1717047 |
Zbl 0943.34022
[24] Mehri, B., Shadman, D.:
On the existence of periodic solutions of a certain class of second order nonlinear differential equation. Math. Inequal. Appl. 1, 3 (1998), 431–436.
MR 1629412
[25] Mehri, B., Shadman, D.:
Periodic solutions of a certain non-linear third order differential equation. Scientia Iranica 11 (2004), 181–184.
MR 2106566
[26] Mehri, B.:
Periodic solution for certain non linear third-order differential equation. Indian J. Pure Appl. Math. 21, 3 (1990), 203–210.
MR 1044260 |
Zbl 0708.34030
[27] Minhós, F.:
Periodic solutions for a third order differential equation under conditions on the potential. Portugaliae Mathematica 55, 4 (1998), 475–484.
MR 1672255 |
Zbl 0923.34045
[28] LaSalle, J., Lefschetz, S.:
Stability by Liapunov’s direct method with applications. Academic Press, New York–London, 1961.
MR 0132876
[29] Ogundare, B. S.:
On the boundedness and stability results for the solutions of certain third-order nonlinear differential equations. Kragujevac J. Math. 29 (2006), 37–48.
MR 2288487
[30] Omeike, M. O.:
New result in the ultimate boundedness of solutions of a third-order nonlinear ordinary differential equation. J. Inequal. Pure and Appl. Math. 9, 1 (2008), Art. 15, 1–8.
MR 2391282 |
Zbl 1173.34321
[31] Reissig, R., Sansone, G., Conti, R.:
Nonlinear Differential Equations of Higher Order. Noordhoff International Publishing, Leyeden, 1974.
MR 0344556
[32] Rouche, N., Habets, N., Laloy, M.:
Stability Theory by Liapunov’s Direct Method. Applied Mathematical Sciences 22, Spriger-Verlag, New York–Heidelberg–Berlin, 1977.
MR 0450715 |
Zbl 0364.34022
[34] Swick, K. E.:
On the boundedness and the stability of solutions for some non-autonomous differential equations of the third order. J. London Math. Soc. 44 (1969), 347–359.
DOI 10.1112/jlms/s1-44.1.347 |
MR 0236482
[35] Tejumola, H. O.: A note on the boundedness of solutions of some nonlinear differential equations of the third-order. Ghana J. of Science 11, 2 (1970), 117–118.
[37] Tunç, C., Çmar, I.:
On the existence of periodic solutions to nonlinear differential equations of second order. Differ. Uravn. Protsessy Upr. (Differential equations and control processes), 3 (2008), 1–6.
MR 2515107
[38] Tunç, C.:
Boundedness of solutions of a third-order nonlinear differential equation. J. Inequal. Pure and Appl. Math. 6, 1 (2005), 1–6.
MR 2122950 |
Zbl 1082.34514
[40] Tunç, C.:
Some new results on the boundedness of solutions of a certain nonlinear differential equation of third-order. International J. of Nonlinear Science 7, 2 (2009), 246–256.
MR 2496738 |
Zbl 1371.34045
[41] Yoshizawa, T.:
Liapunov’s function and boundedness of solutions. Funkcialaj Ekvacioj 2 (1958), 71–103.
MR 0114981
[42] Yoshizawa, T.:
Stability Theory by Liapunov’s Second Method. The Mathematical Society of Japan, 1966.
MR 0208086
[43] Yoshizawa, T.:
Stability Theory and Existence of Periodic Solutions and Almost Periodic Solutions. Spriger-Verlag, New York–Heidelberg–Berlin, 1975.
MR 0466797