Previous |  Up |  Next

Article

Keywords:
orthosymmetric multilinear map; homogeneous polynomial; Riesz space
Summary:
Let $E$ be a Riesz space, $F$ a Hausdorff topological vector space (t.v.s.). We prove, under a certain separation condition, that any orthosymmetric bilinear map $T:E\times E\rightarrow F$ is automatically symmetric. This generalizes in certain way an earlier result by F. Ben Amor [On orthosymmetric bilinear maps, Positivity 14 (2010), 123--134]. As an application, we show that under a certain separation condition, any orthogonally additive homogeneous polynomial $P : E\rightarrow F$ is linearly represented. This fits in the type of results by Y. Benyamini, S. Lassalle and J.L.G. Llavona [Homogeneous orthogonally additive polynomials on Banach lattices, Bulletin of the London Mathematical Society 38 (2006), no. 3 459--469].
References:
[1] Aliprantis C.D., Burkinshaw O.: Positive Operators. Springer, Dordrecht, 2006. MR 2262133 | Zbl 1098.47001
[2] Ben Amor F.: On orthosymmetric bilinear maps. Positivity 14 (2010), 123–134. DOI 10.1007/s11117-009-0009-4 | MR 2596468 | Zbl 1204.06010
[3] Benyamini Y., Lassalle S., Llavona J.L.G.: Homogeneous orthogonally additive polynomials on Banach lattices. Bull. London Math. Soc. 38 (2006), no. 3, 459–469. DOI 10.1112/S0024609306018364 | MR 2239041 | Zbl 1110.46033
[4] Beukers F., Huijsmans C.B.: Calculus in f-algebras. J. Austral. Math. Soc. Ser. A 37 (1984), no. 1, 110–116. DOI 10.1017/S1446788700021790 | MR 0742249 | Zbl 0555.06014
[5] Boulabiar K.: On products in lattice-ordered algebras. J. Austral. Math. Soc. 75 (2003), no. 1, 1435–1442. DOI 10.1017/S1446788700003451 | MR 1984624 | Zbl 1044.06010
[6] Bu Q., Buskes G.: Polynomials on Banach lattices and positive tensor products. J. Math. Anal. Appl. 388 (2012), 845–862. DOI 10.1016/j.jmaa.2011.10.001 | MR 2869792
[7] Buskes G., van Rooij A.: Almost $f$-algebras: commutativity and the Cauchy-Schwarz inequality. Positivity 4 (2000), no. 3, 227–231. DOI 10.1023/A:1009826510957 | MR 1797125 | Zbl 0987.46002
[8] Carando D., Lassalle S., Zalduendo I.: Orthogonally additive polynomials over C(K) are measures – a short proof. Integral Equations Operator Theory, 56 (2006), no. 4, 597–602. DOI 10.1007/s00020-006-1439-z | MR 2284718 | Zbl 1122.46025
[9] Carando D., Lassalle S., Zalduendo I.: Orthogonally additive holomorphic functions of bounded type over $C(K)$. Proc. Edinb. Math. Soc. (2) 53 (2010), no. 3, 609–618. DOI 10.1017/S0013091509000248 | MR 2720240 | Zbl 1217.46028
[10] Chil E.: Order bounded orthosymmetric bilinear operator. Czechoslovak Math. J. 61 (2011), no. 4, 873–880. DOI 10.1007/s10587-011-0052-8 | MR 2886242 | Zbl 1249.06048
[11] Chil E., Meyer M., Mokaddem M.: On orthosymmetric multilinear maps. Positivity (preprint).
[12] de Pagter B.: $f$-algebras and Orthomorphisms. thesis, Leiden, 1981.
[13] Ibort A., Linares P., Llavona J.G.: On the representation of orthogonally additive polynomials in $\ell_{p}$. Publ. RIMS Kyoto Univ. 45 (2009), 519–524. DOI 10.2977/prims/1241553128 | MR 2510510 | Zbl 1247.46037
[14] Jaramillo J.A., Prieto A., Zalduendo I.: Orthogonally additive holomorphic functions on open subsets of C(K). Rev. Mat. Complut. 25 (2012), no. 1, 31–41. DOI 10.1007/s13163-010-0055-2 | MR 2876915 | Zbl 1279.46027
[15] Luxemburg W.A., Zaanen A.C.: Riesz Spaces I. North-Holland, Amsterdam, 1971.
[16] Meyer-Nieberg P.: Banach Lattices. Springer, Berlin, 1991. MR 1128093 | Zbl 0743.46015
[17] Palazuelos C., Peralta A.M., Villanueva I.: Orthogonally additive polynomials on $C^{*}$-algebras. Quart. J. Math. 59 (2008), 363–374. DOI 10.1093/qmath/ham042 | MR 2444066 | Zbl 1159.46035
[18] Perez-García D., Villanueva I.: Orthogonally additive polynomials on space of continuous functions. J. Math. Anal. Appl. 306 (2005), no. 1, 97–105. DOI 10.1016/j.jmaa.2004.12.036 | MR 2132891
[19] Sundaresan K.: Geometry of spaces of homogeneous polynomials on Banach lattices. Applied geometry and discrete mathematics, 571–586, DIMACS Series in Discrete Mathematics and Theoretical computer Science no. 4, Amer. Math. Soc., Providence, RI, 1991. MR 1116377 | Zbl 0745.46028
Partner of
EuDML logo