Previous |  Up |  Next

Article

Title: On the number of binary signed digit representations of a given weight (English)
Author: Tůma, Jiří
Author: Vábek, Jiří
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 56
Issue: 3
Year: 2015
Pages: 287-306
Summary lang: English
.
Category: math
.
Summary: Binary signed digit representations (BSDR's) of integers have been studied since the 1950's. Their study was originally motivated by multiplication and division algorithms for integers and later by arithmetics on elliptic curves. Our paper is motivated by differential cryptanalysis of hash functions. We give an upper bound for the number of BSDR's of a given weight. Our result improves the upper bound on the number of BSDR's with minimal weight stated by Grabner and Heuberger in On the number of optimal base $2$ representations, Des. Codes Cryptogr. 40 (2006), 25--39, and introduce a new recursive upper bound for the number of BSDR's of any given weight. (English)
Keyword: binary signed digit representation
Keyword: NAF
Keyword: minimal weight
MSC: 11A63
MSC: 68R01
idZBL: Zbl 06486994
idMR: MR3390277
DOI: 10.14712/1213-7243.2015.129
.
Date available: 2015-07-09T20:42:41Z
Last updated: 2017-10-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144345
.
Reference: [1] Booth A.D.: A signed binary multiplication technique.Quart. J. Mech. Appl. Math. 4 (1951), 236–240. Zbl 0043.12902, MR 0041526, 10.1093/qjmam/4.2.236
Reference: [2] Reitwiesner G.: Binary arithmetic.in Advances in Computers, 1, Academic Press, New York, 1960, pp. 231–308. MR 0122018
Reference: [3] Morain F., Olivos J.: Speeding up the computations on an elliptic curve using addition-subtraction chains.RAIRO Inform. Théor. Appl. 24 (1990), 531–543. Zbl 0724.11068, MR 1082914
Reference: [4] Koyama K., Tsuruoka Y.: Speeding up elliptic cryptosystems by using a signed binary window method.Advances in cryptology - CRYPTO' 92, Lecture Notes in Comput. Sci., 740, Springer, Berlin, 1993, pp. 345–357. Zbl 0816.94016, MR 1287864
Reference: [5] Miyaji A., Ono T., Cohen H.: Efficient elliptic curve exponentiation.Information and Communications Security, Lecture Notes in Comput. Sci., 1334, Springer, Berlin-Heidelberg, 1997, pp. 282–290. Zbl 0939.11039, 10.1007/BFb0028484
Reference: [6] Solinas J.: Efficient arithmetic on Koblitz curves.Des. Codes Cryptogr. 19 (2000), 195–249. Zbl 0997.94017, MR 1759617, 10.1023/A:1008306223194
Reference: [7] Oswald E., Aigner M.: Randomized addition-subtraction chains as a countermeasure against power attacks.Cryptographic Hardware and Embedded Systems – CHES 2001, Lecture Notes in Comput. Sci., 2162, Springer, Berlin, 2001, pp. 39–50. Zbl 1012.94549, MR 1945397
Reference: [8] Ha J., Moon S.: Randomized signed-scalar multiplication of ECC to resist power attacks.Cryptographic Hardware and Embedded Systems – CHES 2002, Lecture Notes in Comput. Sci., 2523, Springer, Berlin-Heidelberg, 2002, pp. 551–563.
Reference: [9] Ebeid N., Anwar Hasan M.: On randomized private keys to counteract DPA attacks.in Matsui M., Zuccherato R. (ed.), SAC 2003, Lecture Notes in Comput. Sci., 3006, Springer, Berlin, 2004, pp. 58–72. MR 2094721
Reference: [10] Heuberger C.: Minimal expansions in redundant number systems: Fibonacci bases and greedy algorithm.Period. Math. Hungar. 49 (2004), no. 2, 65–89. MR 2106466, 10.1007/s10998-004-0523-x
Reference: [11] Xiaoyu R., Katti R.: Left-to-right optimal signed-binary representation of a pair of integers.IEEE Trans. Comput. 54 (2005), 132–140.
Reference: [12] Muir J.A., Stinson D.R.: Minimality and other properties of the width-w nonadjacent form.Math. Comp. 75 (2006), no. 253, 369–384. Zbl 1091.94026, MR 2176404
Reference: [13] Heuberger C., Prodinger H.: Analysis of alternative digit sets for nonadjacent representations.Monatsh. Math. 147 (2006), 219–248. Zbl 1094.11007, MR 2215565, 10.1007/s00605-005-0364-6
Reference: [14] Grabner P.J., Heuberger C.: On the number of optimal base $2$ representations.Des. Codes Cryptogr. 40 (2006), 25–39. Zbl 1261.11003, MR 2226281, 10.1007/s10623-005-6158-y
Reference: [15] Stevens M., Lenstra A., de Weger B.: Chosen-prefix collisions for MD$5$ and colliding X.$509$ certificates for different identities.Advances in cryptology – EUROCRYPT 2007 (Moni Naor, ed.), Lecture Notes in Comput. Sci., 4515, Springer, Berlin, 2007, pp. 1–22. MR 2449200
Reference: [16] Kim T.H., Han D., Okeya K., Lim J.I.: Differential power analysis on countermeasures using binary signed digit representations.ETRI Journal, vol. 29, no. 5, Oct. 2007, pp. 619–632. 10.4218/etrij.07.0106.0220
Reference: [17] Bang-ju Wang, Huan-guo Zhang, Zhang-yi Wang, Yu-hua Wang: Speeding up scalar multiplication using a new signed binary representation for integers.Multimedia Content Analysis and Mining, Lecture Notes in Comput. Sci., 4577, Springer, Berlin-Heidelberg, 2007, pp. 277–285. 10.1007/978-3-540-73417-8_35
Reference: [18] Vábek J., Joščák D., Boháček M., Tůma J.: A new type of $2$-block collisions in MD$5$.in Chowdury, Rijmen, Das (ed.), Progress in cryptology – INDOCRYPT 2008, Lecture Notes in Comput. Sci., 5365, Springer, Berlin, 2008, pp. 78-90. MR 2546237
Reference: [19] Wu T., Zhang M., Du H., Wang R.: On optimal binary signed digit representation of integers.Appl. Math. J. Chinese Univ. Ser.B 25 (2010), no. 3, 331–340. MR 2679352, 10.1007/s11766-010-2241-x
Reference: [20] Avanzi R., Heuberger C., Prodinger H.: Redundant $\tau$-adic expansions I: non-adjacent digit sets and their applications to scalar multiplication.Des. Codes Cryptogr. 58 (2011), no. 2, 173–202. Zbl 1230.94003, MR 2770310, 10.1007/s10623-010-9396-6
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_56-2015-3_3.pdf 316.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo