[1] Adams, R. A.:
Sobolev Spaces. Pure and Applied Mathematics 65. A Series of Monographs and Textbooks Academic Press, New York (1975).
MR 0450957 |
Zbl 0314.46030
[2] Berkovits, J., Mustonen, V.:
Topological degree for perturbations of linear maximal monotone mappings and applications to a class of parabolic problems. Rend. Mat. Appl., VII. Ser. 12 (1992), 597-621.
MR 1205967 |
Zbl 0806.47055
[3] Czernous, W.:
Global solutions of semilinear first order partial functional differential equations with mixed conditions. Funct. Differ. Equ. 18 (2011), 135-154.
MR 2894319 |
Zbl 1232.35184
[4] Gajewski, H., Gröger, K., Zacharias, K.:
Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Mathematische Lehrbücher und Monographien II. Abteilung 38 Akademie, Berlin German (1974).
MR 0636412
[5] Giorgi, C., Rivera, J. E. Muñoz, Pata, V.:
Global attractors for a semilinear hyperbolic equation in viscoelasticity. J. Math. Anal. Appl. 260 (2001), 83-99.
DOI 10.1006/jmaa.2001.7437 |
MR 1843969
[7] Hartung, F., Turi, J.:
Stability in a class of functional-differential equations with state-dependent delays. Qualitative Problems for Differential Equations and Control Theory World Scientific Singapore (1995), 15-31 C. Corduneanu.
MR 1372735 |
Zbl 0840.34083
[8] Lions, J. L.:
Quelques méthodes de résolution des problèmes aux limites non linéaires. Études mathématiques Dunod; Gauthier-Villars, Paris French (1969).
MR 0259693 |
Zbl 0189.40603
[9] Simon, L.:
Nonlinear functional parabolic equations. Integral Methods in Science and Engineering: Computational Methods 2. Selected papers based on the presentations at the 10th International Conference on Integral Methods in Science and Engineering, Santander, Spain, 2008 Birkhäuser Boston (2010), 321-326 C. Constanda et al.
MR 2663173 |
Zbl 1263.35214
[10] Simon, L.:
On nonlinear functional parabolic equations with state-dependent delays of Volterra type. Int. J. Qual. Theory Differ. Equ. Appl. 4 (2010), 88-103.
MR 2663173 |
Zbl 1263.35214
[11] Simon, L.:
Application of monotone type operators to parabolic and functional parabolic {PDE}'s. Handbook of Differential Equations: Evolutionary Equations IV Elsevier/North-Holland, Amsterdam (2008), 267-321 C. M. Dafermos et al.
MR 2508168 |
Zbl 1291.35006
[13] Simon, L., Jäger, W.:
On non-uniformly parabolic functional differential equations. Stud. Sci. Math. Hung. 45 (2008), 285-300.
MR 2417974 |
Zbl 1174.35054
[15] Zeidler, E.:
Nonlinear Functional Analysis and Its Applications. II/A: Linear Monotone Operators. Springer New York (1990).
MR 1033497 |
Zbl 0684.47028
[16] Zeidler, E.:
Nonlinear Functional Analysis and Its Applications. II/B: Nonlinear Monotone Operators. Springer New York (1990).
MR 1033498 |
Zbl 0684.47029