[1] Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., (eds.), H. van der Vorst:
Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Software-Environments-Tools. 11 SIAM, Philadelphia (2000).
MR 1792141 |
Zbl 0965.65058
[3] Beattie, C.:
Harmonic Ritz and Lehmann bounds. ETNA, Electron. Trans. Numer. Anal. 7 18-39 (1998).
MR 1665476 |
Zbl 0918.65027
[4] Brandts, J.:
The Riccati algorithm for eigenvalues and invariant subspaces of matrices with inexpensive action. Linear Algebra Appl. 358 335-365 (2003).
MR 1942737 |
Zbl 1030.65022
[7] Ciarlet, P. G., (eds.), J. L. Lions:
Handbook of Numerical Analysis. Volume II: Finite Element Methods (Part 1). North-Holland, Amsterdam (1991).
MR 1115235 |
Zbl 0712.65091
[12] Golub, G. H., Loan, C. F. van:
Matrix Computations. The Johns Hopkins Univ. Press Baltimore (1996).
MR 1417720
[13] Győrffy, W., Seidler, P., Christiansen, O.:
Solving the eigenvalue equations of correlated vibrational structure methods: preconditioning and targeting strategies. J. Chem. Phys. 131 (2009), 024108.
DOI 10.1063/1.3154382
[15] Lanczos, C.:
An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Research Nat. Bur. Standards 45 (1950), 255-282.
DOI 10.6028/jres.045.026 |
MR 0042791
[16] Medvedev, D. M., Gray, S. K., Wagner, A. F., Minkoff, M., Shepard, R.: Advanced software for the calculation of thermochemistry, kinetics, and dynamics. J. Phys.: Conf. Ser. 16 (2005), 247-251.
[17] Morgan, R. B., Scott, D. S.:
Generalizations of Davidson's method for computing eigenvalues of sparse symmetric matrices. SIAM J. Sci. Stat. Comput. 7 (1986), 817-825.
DOI 10.1137/0907054 |
MR 0848565 |
Zbl 0602.65020
[19] Parlett, B. N.:
The Symmetric Eigenvalue Problem. Classics in Applied Mathematics 20 SIAM, Philadelphia (1998).
MR 1490034 |
Zbl 0885.65039
[20] Ribeiro, F., Lung, C., Leforestier, C.: A Jacobi-Wilson description coupled to a block-Davidson algorithm: an efficient scheme to calculate highly excited vibrational levels. J. Chem. Phys. 123 (2005), 054106.
[21] Shepard, R., Wagner, A. F., Tilson, J. L., Minkoff, M.:
The subspace projected approximate matrix (SPAM) modification of the Davidson method. J. Comput. Phys. (2001), 172 472-514.
MR 1857613 |
Zbl 0986.65027
[22] Sleijpen, G. L. G., Eshof, J. van den:
On the use of harmonic Ritz pairs in approximating internal eigenpairs. Linear Algebra Appl. 358 115-137 (2003).
MR 1942726
[23] Sleijpen, G. L. G., Vorst, H. A. van der:
A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17 (1996), 401-425.
DOI 10.1137/S0895479894270427 |
MR 1384515
[24] Sleijpen, G. L. G., Vorst, H. A. van der: The Jacobi-Davidson method for eigenvalue problems and its relation with accelerated inexact Newton schemes. Iterative Method in Linear Algebra II S. D. Margenov, P. S. Vassilevski IMACS Ann. Comput. Appl. Math. 3 (1996), 377-389.
[29] Stewart, G. W., Sun, J. G.:
Matrix Perturbation Theory. Computer Science and Scientific Computing Academic Press, Boston (1990).
MR 1061154 |
Zbl 0706.65013
[30] Wrobel, L. C., Aliabadi, M. H.:
The Boundary Element Method. Vol. 1: Applications in Thermo-Fluids and Acoustics. Wiley, Chichester (2002).
Zbl 0994.74002