Previous |  Up |  Next

Article

Keywords:
implicit fractional-order differential equation; Caputo fractional derivative, integrable solution; existence fixed point; infinite delay
Summary:
In this paper we study the existence of integrable solutions for initial value problem for implicit fractional order functional differential equations with infinite delay. Our results are based on Schauder type fixed point theorem and the Banach contraction principle fixed point theorem.
References:
[1] Abbas, S., Benchohra, M., N’Guérékata, G.M.: Topics in Fractional Differential Equations. Springer, New York, 2012. MR 2962045
[2] Abbas, S., Benchohra, M., N’Guérékata, G.M.: Avanced Fractional Differential and Integral Equations. Nova Science Publishers, New York, 2015. MR 3309582
[3] Agarwal, R.P., Belmekki, M., Benchohra, M.: A survey on semilinear differential equations and inclusions involving Riemann–Liouville fractional derivative. Adv. Differential Equations 2009 (2009), 1–47, ID 981728. DOI 10.1155/2009/981728 | MR 2505633 | Zbl 1182.34103
[4] Agarwal, R.P., Benchohra, M., Hamani, S.: A survey on existence result for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109 (3) (2010), 973–1033. DOI 10.1007/s10440-008-9356-6 | MR 2596185
[5] Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods. World Scientific Publishing, New York, 2012. MR 2894576 | Zbl 1248.26011
[6] Belarbi, A., Benchohra, M., Ouahab, A.: Uniqueness results for fractional functional differential equations with infinite delay in Fréchet spaces. Appl. Anal. 85 (2006), 1459–1470. DOI 10.1080/00036810601066350 | MR 2282996 | Zbl 1175.34080
[7] Benchohra, M., Hamani, S., Ntouyas, S.K.: Boundary value problems for differential equations with fractional order. Surveys Math. Appl. 3 (2008), 1–12. MR 2390179 | Zbl 1157.26301
[8] Benchohra, M., Hamani, S., Ntouyas, S.K.: Boundary value problems for differential equations with fractional order and nonlocal conditions. Nonlinear Anal. 71 (2009), 2391–2396. MR 2532767
[9] Benchohra, M., Henderson, J., Ntouyas, S.K., Ouahab, A.: Existence results for functional differential equations of fractional order. J. Math. Anal. Appl. 338 (2008), 1340–1350. DOI 10.1016/j.jmaa.2007.06.021 | MR 2386501
[10] Deimling, K.: Nonlinear Functional Analysis. Springer-Verlag, 1985. MR 0787404 | Zbl 0559.47040
[11] El-Sayed, A.M.A., Abd El-Salam, Sh.A.: $L^p$-solution of weighted Cauchy-type problem of a differ-integral functional equation. Intern. J. Nonlinear Sci. 5 (2008), 281–288. MR 2410798 | Zbl 1230.34006
[12] El-Sayed, A.M.M., Hashem, H.H.G.: Integrable and continuous solutions of a nonlinear quadratic integral equation. Electron. J. Qual. Theory Differ. Equ. 25) (2008), 1–10. DOI 10.14232/ejqtde.2008.1.25 | MR 2443206 | Zbl 1178.45008
[13] Hale, J., Kato, J.: Phase space for retarded equations with infinite delay. Funkcial. Ekvac. 21 (1978), 11–41. MR 0492721 | Zbl 0383.34055
[14] Hale, J.K., Lunel, S M.V.: Introduction to Functional Differential Equations. Springer-Verlag, New York, 1993. MR 1243878 | Zbl 0787.34002
[15] Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore, 2000. MR 1890104 | Zbl 0998.26002
[16] Hino, Y., Murakami, S., Naito, T.: Functional Differential Equations with Infinite Delay. Springer-Verlag, Berlin, 1991. MR 1122588 | Zbl 0732.34051
[17] Kappel, F., Schappacher, W.: Some considerations to the fundamental theory of infinite delay equations. J. Differential Equations 37 (1980), 141–183. DOI 10.1016/0022-0396(80)90093-5 | MR 0587220 | Zbl 0466.34036
[18] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006. MR 2218073 | Zbl 1092.45003
[19] Lakshmikantham, V., Leela, S., Vasundhara, J.: Theory of Fractional Dynamic Systems. Cambridge Academic Publishers, 2009. Zbl 1188.37002
[20] Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. An introduction to mathematical models . Imperial College Press, London, 2010. MR 2676137 | Zbl 1210.26004
[21] Ortigueira, M.D.: Fractional Calculus for Scientists and Engineers. Lecture Notes in Electrical Engineering, vol. 84, Springer, Dordrecht, 2011. DOI 10.1007/978-94-007-0747-4 | MR 2768178 | Zbl 1251.26005
[22] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego, 1999. MR 1658022 | Zbl 0924.34008
[23] Schumacher, K.: Existence and continuous dependence for differential equations with unbounded delay. Arch. Ration. Mech. Anal. 64 (1978), 315–335. MR 0477379
[24] Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Heidelberg; Higher Education Press, Beijing, 2010. MR 2796453
Partner of
EuDML logo