Previous |  Up |  Next

Article

Title: On Laplacian eigenvalues of connected graphs (English)
Author: Milovanović, Igor Ž.
Author: Milovanović, Emina I.
Author: Glogić, Edin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 2
Year: 2015
Pages: 529-535
Summary lang: English
.
Category: math
.
Summary: Let $G$ be an undirected connected graph with $n$, $n\ge 3$, vertices and $m$ edges with Laplacian eigenvalues $\mu _1\ge \mu _2 \ge \cdots \ge \mu _{n-1}>\mu _n =0$. Denote by $\mu _I =\mu _{r_1}+\mu _{r_2} +\cdots +\mu _{r_k}$, $1\le k\le n-2$, $1\le r_1<r_2<\cdots <r_k\le n-1$, the sum of $k$ arbitrary Laplacian eigenvalues, with $\mu _{I_1}=\mu _1+\mu _2+\cdots +\mu _k$ and $\mu _{I_n}=\mu _{n-k}+\cdots +\mu _{n-1}$. Lower bounds of graph invariants $\mu _{I_1}-\mu _{I_n}$ and ${\mu _{I_1}}/{\mu _{I_n}}$ are obtained. Some known inequalities follow as a special case. (English)
Keyword: Laplacian eigenvalues
Keyword: linear spread
Keyword: ratio spread
MSC: 05C50
MSC: 15A18
idZBL: Zbl 06486962
idMR: MR3360442
DOI: 10.1007/s10587-015-0191-4
.
Date available: 2015-06-16T18:04:08Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144285
.
Reference: [1] Biggs, N.: Algebraic Graph Theory.Cambridge University Press Cambridge (1974). Zbl 0284.05101, MR 0347649
Reference: [2] Das, K. Ch., Gutman, I., Çevik, A. S., Zhou, B.: On Laplacian energy.MATCH Commun. Math. Comput. Chem. 70 (2013), 689-696. Zbl 1299.05212, MR 3155574
Reference: [3] Diaz, J. B., Matcalf, F. T.: Stronger forms of a class of inequalities of G. Pólya-G. Szegő and L. V. Kantorovich.Bull. Am. Math. Soc. 69 (1963), 415-418. MR 0146324, 10.1090/S0002-9904-1963-10953-2
Reference: [4] Du, Z., Zhou, B.: Upper bounds for the sum of Laplacian eigenvalues of graphs.Linear Algebra Appl. 436 (2012), 3672-3683. Zbl 1241.05074, MR 2900744, 10.1016/j.laa.2012.01.007
Reference: [5] Edwards, C. S.: The largest vertex degree sum for a triangle in a graph.Bull. Lond. Math. Soc. 9 (1977), 203-208. Zbl 0357.05058, MR 0463005, 10.1112/blms/9.2.203
Reference: [6] Fath-Tabar, G. H., Ashrafi, A. R.: Some remarks on Laplacian eigenvalues and Laplacian energy of graphs.Math. Commun. 15 (2010), 443-451. Zbl 1206.05062, MR 2814304
Reference: [7] Fritsher, E., Hoppen, C., Rocha, I., Trevisan, V.: On the sum of the Laplacian eigenvalues of a tree.Linear Algebra Appl. 435 (2011), 371-399. MR 2782788
Reference: [8] Goldberg, F.: Bounding the gap between extremal Laplacian eigenvalues of graphs.Linear Algebra Appl. 416 (2006), 68-74. Zbl 1107.05059, MR 2232920, 10.1016/j.laa.2005.07.007
Reference: [9] Gutman, I., Das, K. Ch.: The first Zagreb index 30 years after.MATCH Commun. Math. Comput. Chem. 50 (2004), 83-92. Zbl 1053.05115, MR 2037426
Reference: [10] Gutman, I., Trinajstić, N.: Graph theory and molecular orbitals.Total $\pi$-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17 (1972), 535-538. 10.1016/0009-2614(72)85099-1
Reference: [11] Haemers, W. H., Mohammadian, A., Tayfeh-Rezaie, B.: On the sum of Laplacian eigenvalues of graphs.Linear Algebra Appl. 432 (2010), 2214-2221. Zbl 1218.05094, MR 2599854, 10.1016/j.laa.2009.03.038
Reference: [12] Li, R.: Inequalities on vertex degrees, eigenvalues and (singless) Laplacian eigenvalues of graphs.Int. Math. Forum 5 (2010), 1855-1860. MR 2672449
Reference: [13] Merris, R.: Laplacian matrices of graphs: A survey.Linear Algebra Appl. 197-198 (1994), 143-176. Zbl 0802.05053, MR 1275613
Reference: [14] Ozeki, N.: On the estimation of the inequality by the maximum, or minimum values.J. College Arts Sci. Chiba Univ. Japanese 5 (1968), 199-203. MR 0254198
Reference: [15] Rojo, O., Soto, R., Rojo, H.: Bounds for sums of eigenvalues and applications.Comput. Math. Appl. 39 (2000), 1-15. Zbl 0957.15013, MR 1746162, 10.1016/S0898-1221(00)00060-2
Reference: [16] You, Z., Liu, B.: On the Laplacian spectral ratio of connected graphs.Appl. Math. Lett. 25 (2012), 1245-1250. Zbl 1248.05116, MR 2947387, 10.1016/j.aml.2011.09.071
Reference: [17] You, Z., Liu, B.: The Laplacian spread of graphs.Czech. Math. J. 62 (2012), 155-168. Zbl 1245.05089, MR 2899742, 10.1007/s10587-012-0003-z
Reference: [18] Zhou, B.: On Laplacian eigenvalues of a graph.Z. Naturforsch. 59a (2004), 181-184. 10.1515/zna-2004-0310
.

Files

Files Size Format View
CzechMathJ_65-2015-2_17.pdf 221.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo