Title:
|
On Laplacian eigenvalues of connected graphs (English) |
Author:
|
Milovanović, Igor Ž. |
Author:
|
Milovanović, Emina I. |
Author:
|
Glogić, Edin |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
65 |
Issue:
|
2 |
Year:
|
2015 |
Pages:
|
529-535 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $G$ be an undirected connected graph with $n$, $n\ge 3$, vertices and $m$ edges with Laplacian eigenvalues $\mu _1\ge \mu _2 \ge \cdots \ge \mu _{n-1}>\mu _n =0$. Denote by $\mu _I =\mu _{r_1}+\mu _{r_2} +\cdots +\mu _{r_k}$, $1\le k\le n-2$, $1\le r_1<r_2<\cdots <r_k\le n-1$, the sum of $k$ arbitrary Laplacian eigenvalues, with $\mu _{I_1}=\mu _1+\mu _2+\cdots +\mu _k$ and $\mu _{I_n}=\mu _{n-k}+\cdots +\mu _{n-1}$. Lower bounds of graph invariants $\mu _{I_1}-\mu _{I_n}$ and ${\mu _{I_1}}/{\mu _{I_n}}$ are obtained. Some known inequalities follow as a special case. (English) |
Keyword:
|
Laplacian eigenvalues |
Keyword:
|
linear spread |
Keyword:
|
ratio spread |
MSC:
|
05C50 |
MSC:
|
15A18 |
idZBL:
|
Zbl 06486962 |
idMR:
|
MR3360442 |
DOI:
|
10.1007/s10587-015-0191-4 |
. |
Date available:
|
2015-06-16T18:04:08Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144285 |
. |
Reference:
|
[1] Biggs, N.: Algebraic Graph Theory.Cambridge University Press Cambridge (1974). Zbl 0284.05101, MR 0347649 |
Reference:
|
[2] Das, K. Ch., Gutman, I., Çevik, A. S., Zhou, B.: On Laplacian energy.MATCH Commun. Math. Comput. Chem. 70 (2013), 689-696. Zbl 1299.05212, MR 3155574 |
Reference:
|
[3] Diaz, J. B., Matcalf, F. T.: Stronger forms of a class of inequalities of G. Pólya-G. Szegő and L. V. Kantorovich.Bull. Am. Math. Soc. 69 (1963), 415-418. MR 0146324, 10.1090/S0002-9904-1963-10953-2 |
Reference:
|
[4] Du, Z., Zhou, B.: Upper bounds for the sum of Laplacian eigenvalues of graphs.Linear Algebra Appl. 436 (2012), 3672-3683. Zbl 1241.05074, MR 2900744, 10.1016/j.laa.2012.01.007 |
Reference:
|
[5] Edwards, C. S.: The largest vertex degree sum for a triangle in a graph.Bull. Lond. Math. Soc. 9 (1977), 203-208. Zbl 0357.05058, MR 0463005, 10.1112/blms/9.2.203 |
Reference:
|
[6] Fath-Tabar, G. H., Ashrafi, A. R.: Some remarks on Laplacian eigenvalues and Laplacian energy of graphs.Math. Commun. 15 (2010), 443-451. Zbl 1206.05062, MR 2814304 |
Reference:
|
[7] Fritsher, E., Hoppen, C., Rocha, I., Trevisan, V.: On the sum of the Laplacian eigenvalues of a tree.Linear Algebra Appl. 435 (2011), 371-399. MR 2782788 |
Reference:
|
[8] Goldberg, F.: Bounding the gap between extremal Laplacian eigenvalues of graphs.Linear Algebra Appl. 416 (2006), 68-74. Zbl 1107.05059, MR 2232920, 10.1016/j.laa.2005.07.007 |
Reference:
|
[9] Gutman, I., Das, K. Ch.: The first Zagreb index 30 years after.MATCH Commun. Math. Comput. Chem. 50 (2004), 83-92. Zbl 1053.05115, MR 2037426 |
Reference:
|
[10] Gutman, I., Trinajstić, N.: Graph theory and molecular orbitals.Total $\pi$-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17 (1972), 535-538. 10.1016/0009-2614(72)85099-1 |
Reference:
|
[11] Haemers, W. H., Mohammadian, A., Tayfeh-Rezaie, B.: On the sum of Laplacian eigenvalues of graphs.Linear Algebra Appl. 432 (2010), 2214-2221. Zbl 1218.05094, MR 2599854, 10.1016/j.laa.2009.03.038 |
Reference:
|
[12] Li, R.: Inequalities on vertex degrees, eigenvalues and (singless) Laplacian eigenvalues of graphs.Int. Math. Forum 5 (2010), 1855-1860. MR 2672449 |
Reference:
|
[13] Merris, R.: Laplacian matrices of graphs: A survey.Linear Algebra Appl. 197-198 (1994), 143-176. Zbl 0802.05053, MR 1275613 |
Reference:
|
[14] Ozeki, N.: On the estimation of the inequality by the maximum, or minimum values.J. College Arts Sci. Chiba Univ. Japanese 5 (1968), 199-203. MR 0254198 |
Reference:
|
[15] Rojo, O., Soto, R., Rojo, H.: Bounds for sums of eigenvalues and applications.Comput. Math. Appl. 39 (2000), 1-15. Zbl 0957.15013, MR 1746162, 10.1016/S0898-1221(00)00060-2 |
Reference:
|
[16] You, Z., Liu, B.: On the Laplacian spectral ratio of connected graphs.Appl. Math. Lett. 25 (2012), 1245-1250. Zbl 1248.05116, MR 2947387, 10.1016/j.aml.2011.09.071 |
Reference:
|
[17] You, Z., Liu, B.: The Laplacian spread of graphs.Czech. Math. J. 62 (2012), 155-168. Zbl 1245.05089, MR 2899742, 10.1007/s10587-012-0003-z |
Reference:
|
[18] Zhou, B.: On Laplacian eigenvalues of a graph.Z. Naturforsch. 59a (2004), 181-184. 10.1515/zna-2004-0310 |
. |