[2] Adimurthi:
Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 17 393-413 (1990).
MR 1079983 |
Zbl 0732.35028
[3] Battaglia, L., Mancini, G.:
Remarks on the Moser-Trudinger inequality. Adv. Nonlinear Anal. 2 389-425 (2013).
MR 3199739 |
Zbl 1290.46025
[4] Carleson, L., Chang, S.-Y. A.:
On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math., II. Sér. 110 113-127 (1986), French summary.
MR 0878016
[5] Černý, R.:
Concentration-compactness principle for embedding into multiple exponential spaces. Math. Inequal. Appl. 15 165-198 (2012).
MR 2919441 |
Zbl 1236.46027
[8] Černý, R., Cianchi, A., Hencl, S.:
Concentration-compactness principle for Moser-Trudinger inequalities: new results and proofs. Ann. Mat. Pura Appl. (4) 192 225-243 (2013).
DOI 10.1007/s10231-011-0220-3 |
MR 3035137
[10] Černý, R., Gurka, P., Hencl, S.:
On the Dirichlet problem for the $n,\alpha$-Laplacian with the nonlinearity in the critical growth range. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 5189-5204 (2011).
DOI 10.1016/j.na.2011.05.015 |
MR 2810699 |
Zbl 1225.35062
[12] Chabrowski, J.:
Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents. Calc. Var. Partial Differ. Equ. 3 493-512 (1995).
DOI 10.1007/BF01187898 |
MR 1385297 |
Zbl 0838.35035
[14] Figueiredo, D. G. de, Miyagaki, O. H., Ruf, B.:
Elliptic equations in $\mathbb R^2$ with nonlinearities in the critical growt hrange. Calc. Var. Partial Differ. Equ. 3 139-153 (1995).
DOI 10.1007/BF01205003 |
MR 1386960
[16] Ó, J. M. do, Souza, M. de, Medeiros, E. de, Severo, U.:
An improvement for the Trudinger-Moser inequality and applications. J. Differ. Equations 256 1317-1349 (2014).
DOI 10.1016/j.jde.2013.10.016 |
MR 3145759
[17] Ó, J. M. do, Medeiros, E., Severo, U.:
On a quasilinear nonhomogenous elliptic equation with critical growth in $\mathbb R^N$. J. Differ. Equations 246 1363-1386 (2009).
DOI 10.1016/j.jde.2008.11.020 |
MR 2488689
[21] Edmunds, D. E., Gurka, P., Opic, B.:
Double exponential integrability, Bessel potentials and embedding theorems. Stud. Math. 115 151-181 (1995).
MR 1347439 |
Zbl 0829.47024
[23] Edmunds, D. E., Krbec, M.:
Two limiting cases of Sobolev imbeddings. Houston J. Math. 21 119-128 (1995).
MR 1331250 |
Zbl 0835.46027
[29] Opic, B., Pick, L.:
On generalized Lorentz-Zygmund spaces. Math. Inequal. Appl. 2 391-467 (1999).
MR 1698383 |
Zbl 0956.46020
[30] Rao, M. M., Ren, Z. D.:
Theory of Orlicz Spaces. Pure and Applied Mathematics 146 Marcel Dekker, New York (1991).
MR 1113700 |
Zbl 0724.46032
[32] Talenti, G.:
Inequalities in rearrangement invariant function spaces. Nonlinear Analysis, Function Spaces and Applications. Vol. 5 M. Krbec et al. Proc. Conf., Praha, 1994. Prometheus Publishing House Praha (1994), 177-230.
MR 1322313 |
Zbl 0872.46020
[33] Trudinger, N. S.:
On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17 473-484 (1967).
MR 0216286 |
Zbl 0163.36402