Previous |  Up |  Next

Article

Keywords:
tournament matrix; Brualdi-Li matrix; eigenvalue; Perron value
Summary:
In this paper we derive new properties complementary to an $2n \times 2n$ Brualdi-Li tournament matrix $B_{2n}$. We show that $B_{2n}$ has exactly one positive real eigenvalue and one negative real eigenvalue and, as a by-product, reprove that every Brualdi-Li matrix has distinct eigenvalues. We then bound the partial sums of the real parts and the imaginary parts of its eigenvalues. The inverse of $B_{2n}$ is also determined. Related results obtained in previous articles are proven to be corollaries.
References:
[1] Brauer, A., Gentry, I. C.: Some remarks on tournament matrices. Linear Algebra Appl. 5 (1972), 311-318. MR 0304206 | Zbl 0246.15012
[2] Brauer, A., Gentry, I. C.: On the characteristic roots of tournament matrices. Bull. Am. Math. Soc. 74 (1968), 1133-1135. DOI 10.1090/S0002-9904-1968-12079-8 | MR 0232784 | Zbl 0167.03002
[3] Brualdi, R., Li, Q.: Problem 31. Discrete Mathematics 43 (1983), 329-330.
[4] Davis, P. J.: Circulant Matrices. Pure & Applied Mathematics. John Wiley & Sons New York (1979). MR 0543191
[5] Friedland, S.: Eigenvalues of almost skew symmetric matrices and tournament matrices. Combinatorial and Graph-Theoretical Problems in Linear Algebra; Proceedings of a workshop held at the University of Minnesota, USA, 1991; IMA Vol. Math. Appl. 50 Springer, New York (1993), 189-206 R. A. Brualdi et al. MR 1240964 | Zbl 0789.15019
[6] Gregory, D. A., Kirkland, S. J.: Singular values of tournament matrices. Electron. J. Linear Algebra (electronic only) 5 (1999), 39-52. MR 1668927 | Zbl 0915.05085
[7] Gregory, D. A., Kirkland, S. J., Shader, B. L.: Pick's inequality and tournaments. Linear Algebra Appl. 186 (1993), 15-36. MR 1217195 | Zbl 0776.05072
[8] Hardy, G. H., Littlewood, J. E., Pólya, G.: Inequalities. Cambridge Mathematical Library Cambridge Univ. Press, Cambridge (1952). MR 0046395 | Zbl 0047.05302
[9] Hemasinha, R., Weaver, J. R., Kirkland, S. J., Stuart, J. L.: Properties of the Brualdi-{L}i tournament matrix. Linear Algebra Appl. 361 (2003), 63-73. MR 1955553 | Zbl 1017.05074
[10] Horn, A.: Doubly stochastic matrices and the diagonal of a rotation matrix. Am. J. Math. 76 (1954), 620-630. DOI 10.2307/2372705 | MR 0063336 | Zbl 0055.24601
[11] Horn, R. A., Johnson, C. R.: Matrix Analysis. Cambridge University Press Cambridge (1991). Zbl 0729.15001
[12] Kirkland, S.: An upper bound on the Perron value of an almost regular tournament matrix. Linear Algebra Appl. 361 (2003), 7-22. MR 1955551 | Zbl 1019.15004
[13] Kirkland, S.: A note on Perron vectors for almost regular tournament matrices. Linear Algebra Appl. 266 (1997), 43-47. MR 1473192 | Zbl 0901.15011
[14] Kirkland, S.: A note on the sequence of Brualdi-{L}i matrices. Linear Algebra Appl. 248 (1996), 233-240. DOI 10.1016/0024-3795(95)00196-4 | MR 1416458 | Zbl 0865.15014
[15] Kirkland, S.: On the minimum Perron value for an irreducible tournament matrix. Linear Algebra Appl. 244 (1996), 277-304. MR 1403286 | Zbl 0860.15016
[16] Kirkland, S.: Hypertournament matrices, score vectors and eigenvalues. Linear Multilinear Algebra 30 (1991), 261-274. DOI 10.1080/03081089108818111 | MR 1129183 | Zbl 0751.15009
[17] Kirkland, S. J., Shader, B. L.: Tournament matrices with extremal spectral properties. Linear Algebra Appl. 196 (1994), 1-17. MR 1273972 | Zbl 0790.15021
[18] Maybee, J. S., Pullman, N. J.: Tournament matrices and their generalizations. I. Linear Multilinear Algebra 28 (1990), 57-70. DOI 10.1080/03081089008818030 | MR 1077735 | Zbl 0714.05041
[19] Mirsky, L.: Inequalities and existence theorems in the theory of matrices. J. Math. Anal. Appl. 9 (1964), 99-118. DOI 10.1016/0022-247X(64)90009-5 | MR 0163918 | Zbl 0133.26202
[20] Moon, J. W.: Topics on Tournaments. Holt, Rinehart and Winston New York (1968). MR 0256919 | Zbl 0191.22701
[21] Moon, J. W., Pullman, N. J.: On generalized tournament matrices. SIAM Rev. 12 (1970), 384-399. DOI 10.1137/1012081 | MR 0272644 | Zbl 0198.03804
[22] Pólya, G., Szegő, G.: Problems and Theorems in Analysis. II: Theory of Functions, Zeros, Polynomials, Determinants, Number Theory, Geometry. Classics in Mathematics Springer, Berlin (1998). MR 1492448 | Zbl 1024.00003
[23] Shader, B. L.: On tournament matrices. Linear Algebra Appl. 162-164 (1992), 335-368. MR 1148408 | Zbl 0744.15015
Partner of
EuDML logo