Previous |  Up |  Next

Article

Keywords:
fractional difference systems; difference operators; stability
Summary:
In the paper we study the subject of stability of systems with $h$-differences of Caputo-, Riemann-Liouville- and Grünwald-Letnikov-type with $n$ fractional orders. The equivalent descriptions of fractional $h$-difference systems are presented. The sufficient conditions for asymptotic stability are given. Moreover, the Lyapunov direct method is used to analyze the stability of the considered systems with $n$-orders.
References:
[1] Abdeljawad, T., Baleanu, D.: Fractional differences and integration by parts. J. Computat. Analysis Appl. 13 (2011), 574-582. MR 2752428 | Zbl 1225.39008
[2] Atıcı, F. M., Eloe, P. W.: A transform method in discrete fractional calculus. Int. J. Differ, Equ. 2 (2007), 165-176. MR 2493595
[3] Atıcı, F. M., Eloe, P. W.: Discrete fractional calculus with the nabla operator. Electron. J. Qual. Theory Differ. Equ. Spec. Ed. I(3) (2009), 1-12. DOI 10.14232/ejqtde.2009.4.3 | MR 2558828 | Zbl 1189.39004
[4] Bastos, N. R. O., Ferreira, R. A. C., Torres, D. F. M.: Discrete-time fractional variational problems. Signal Processing 91 (2011), 513-524. DOI 10.1016/j.sigpro.2010.05.001 | Zbl 1203.94022
[5] Bastos, N. R. O., Ferreira, R. A. C., Torres, D. F. M.: Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete Contin. Dyn. Syst. 29 (2011), 417-437. DOI 10.3934/dcds.2011.29.417 | MR 2728463 | Zbl 1209.49020
[6] Busłowicz, M.: Stability of continuous-time linear systems described by state equation with fractional commensurate orders of derivatives. Przegląd Elektroniczby (Electrical Review) 88 (2012), 17-20.
[7] Chen, F., Luo, X., Zhou, Y.: Existence results for nonlinear fractional difference equation. Adv. Differ. Equ. 2011 (2011), 12 pages. DOI 10.1155/2011/713201 | MR 2747089 | Zbl 1207.39012
[8] Chen, F.: Fixed points and asymptotic stability of nonlinear fractional difference equations. Electr. J. Qual. Theory Differ. Equ. 39 (2011), 1-18. DOI 10.1155/2011/713201 | MR 2805759
[9] Chen, F., Liu, Z.: Asymptotic stability results for nonlinear fractional difference equations. J. Appl. Math. 2012 (2012), 14 pages. DOI 10.1155/2012/879657 | MR 2898069 | Zbl 1235.39008
[10] Ferreira, R. A. C., Torres, D. F. M.: Fractional $h$-difference equations arising from the calculus of variations. Appl. Anal. Discrete Math. 5 (2011), 110-121. DOI 10.2298/aadm110131002f | MR 2809039 | Zbl 1289.39007
[11] Girejko, E., Mozyrska, D.: Semi-linear fractional systems with Caputo type multi-step differences. In: Symposium on Fractional Signals and Systems, Instituto Superior de Engenharia de Coimbra, Coimbra, November 2011, pp. 79-88.
[12] Guermah, S., Djennoune, S., Bettayeb, M.: Asymptotic stability and practical stability of linear discrete-time fractional order systems. In: 3rd IFAC Workshop on Fractional Differentiation and its Applications, Ankara 2008.
[13] Holm, M. T.: The Theory of Discrete Fractional Calculus: Development and Application. PhD. Thesis, University of Nebraska - Lincoln, 2011. MR 2873503
[14] Hu, J. B., Lu, G. P., Zhang, S. B., Zhao, L. D.: Lyapunov stability theorem about fractional system without and with delay. Commun. Nonlinear Sci. Numer. Simul. 20 (2014), 905-913. DOI 10.1016/j.cnsns.2014.05.013 | MR 3255642
[15] Jarad, F., Abdeljawad, T., Baleanu, D., Biçen, K.: On the stability of some discrete fractional nonautonomous systems. Abstr. Appl. Anal. 2012 (2012), 9 pages. DOI 10.1155/2012/476581 | MR 2889092 | Zbl 1235.93206
[16] Kaczorek, T.: Selected Problems of Fractional Systems Theory. Springer-Verlag, Berlin, Heidelberg 2011. DOI 10.1007/978-3-642-20502-6 | MR 2798773 | Zbl 1221.93002
[17] Kaczorek, T.: Practical stability of positive fractional discrete-time linear systems. Bull. Pol. Acad. Sci. Techn. Sci. 56 (2008), 313-317. Zbl 1167.93019
[18] Kaczorek, T.: Fractional positive linear systems. Kybernetes 38 (2009), 1059-1078. DOI 10.1108/03684920910976826 | MR 2597223
[19] Kaczorek, T.: Reachability of cone fractional continuous-time linear systems. Int. J. Appl. Math. Comput. Sci. 19 (2009), 89-93. DOI 10.2478/v10006-009-0008-4 | MR 2515026 | Zbl 1169.93004
[20] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and applications of fractional differential equations. North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam 2006. DOI 10.1016/s0304-0208(06)80001-0 | MR 2218073 | Zbl 1092.45003
[21] Li, C. P., Zhang, F. R.: A survey on the stability of fractional differential equations. Eur. Phys. J. 193 (2011), 27-47. DOI 10.1140/epjst/e2011-01379-1
[22] Li, Y., Chen, Y. Q., Podlubny, I.: Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45 (2009), 1965-1969. DOI 10.1140/epjst/e2011-01379-1 | MR 2879525 | Zbl 1185.93062
[23] Li, Y., Chen, Y. Q., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl. 59 (2010), 1810-1821. DOI 10.1016/j.camwa.2009.08.019 | MR 2595955 | Zbl 1189.34015
[24] Margarita, R., Rogosin, S. V., Machado, J. A. Tenreiro, Trujillo, J. J.: Stability of fractional order systems. Math. Probl. Engrg. 2013 (2013), 14 pages. DOI 10.1155/2013/356215 | MR 3062648
[25] Miller, K. S., Ross, B.: Fractional difference calculus. In: Proc. International Symposium on Univalent Functions, Fractional Calculus and their Applications, Nihon University, Koriyama 1988, pp. 139-152. MR 1199147 | Zbl 0693.39002
[26] Mozyrska, D., Girejko, E.: Overview of the fractional $h$-difference operators. In: Advances in Harmonic Analysis and Operator Theory: The Stefan Samko Anniversary Volume (A. Almeida, L. Castro, F.-O. Speck, eds.), Springer 2013, pp. 253-267. DOI 10.1007/978-3-0348-0516-2_14 | MR 3060418
[27] Mozyrska, D., Girejko, E., Wyrwas, M.: Comparision of $h$-difference fractional operators. In: Advances in the Theory and Applications of non-integer Order Systems (W. Mitkowski, J. Kacprzyk, J. Baranowski, eds.), Lect. Notes Electr. Engrg. 257, Springer International Publishing, Switzerland 2013, pp. 191-197. DOI 10.1007/978-3-319-00933-9_17 | MR 3289943
[28] Mozyrska, D., Pawluszewicz, E.: Local controllability of nonlinear discrete-time fractional order systems. Bull. Pol. Acad. Sci. Techn. Sci. 61 (2013), 251-256. DOI 10.2478/bpasts-2013-0024
[29] Ostalczyk, P.: Equivalent descriptions of a discrete time fractional order linear system and its stability domains. Int. J. Appl. Math. Comput. Sci. 22 (2012), 533-538. MR 3025260 | Zbl 1302.93140
[30] Petráš, I.: Stability of fractional-order systems with rational orders: a survey. Fract. Calc. Appl. Anal. 12 (2009), 269-298. MR 2572711 | Zbl 1182.26017
[31] Petráš, I.: Fractional-Order Nonlinear Systems: Modelling, Analysis and Simulation. Springer, Dordrecht 2011. DOI 10.1007/978-3-642-18101-6
[32] Podlubny, I.: Fractional Differential Equations. Mathematics in Sciences and Engineering. Academic Press, San Diego 1999. MR 1658022
[33] Tavazoei, M. S., Haeri, M.: A note on the stability of fractional order systems. Math. Comput. Simul. 79 (2009), 1566-1576. DOI 10.1016/j.matcom.2008.07.003 | MR 2488105 | Zbl 1168.34036
[34] Trigeassou, J. C., Maamri, N., Sabatier, J., Oustaloup, A.: A Lyapunov approach to the stability of fractional differential equations. Signal Process. 91 (2011), 437-445. DOI 10.1016/j.sigpro.2010.04.024 | Zbl 1203.94059
[35] Wyrwas, M., Girejko, E., Mozyrska, D., Pawluszewicz, E.: Stability of fractional difference systems with two orders. In: Advances in the Theory and Applications of Non-integer Order Systems (W. Mitkowski, J. Kacprzyk, and J. Baranowski, eds.), Lect. Notes Electr. Engrg. 257, Springer International Publishing, Switzerland 2013, pp. 41-52. DOI 10.1007/978-3-319-00933-9_4 | MR 3289930 | Zbl 1271.93129
[36] Zhao, L. D., Hu, J. B., Fang, J. A., Zhang, W. B.: Studying on the stability of fractional-order nonlinear system. Nonlinear Dynamics 70 (2012), 475-479. DOI 10.1007/s11071-012-0469-0 | MR 2991287 | Zbl 1267.34013
Partner of
EuDML logo