[2] Bollt, E. M., Dolnik, M.:
Encoding information in chemical chaos by controlling symbolic dynamics. Phys. Rev. E 55 (1997), 6, 6404-6413.
DOI 10.1103/physreve.55.6404
[4] Glenn, C. M., Hayes, S.: Targeting Regions of Chaotic Attractors Using Small Perturbation Control of Symbolic Dynamics. Army Research Laboratory Adelphi MD 1996, No. ARL-TR-903.
[5] Hadamard, J.: Les surfaces à curbures opposés et leurs lignes géodesiques. J. Math. Pure Appl. 5 (1898), 27-73.
[12] Moser, J.:
Stable and Random Motions in Dynamical Systems. Princeton University Press, 1973.
MR 0442980 |
Zbl 0991.70002
[14] Robinson, C.:
Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. CRC Press, 1999.
MR 1792240 |
Zbl 0914.58021
[15] Robinson, E. A., Jr.:
Symbolic dynamics and tiling of ${\mathbb{R}}^d$. In: Symbolic Dynamics ans its Applications (S. G. Williams, ed.), Proc. Symp. Appl. Math. 60 (2002), 81-120.
DOI 10.1090/psapm/060/2078847 |
MR 2078847
[16] Smale, S.:
Diffeomorphism with many periodic points. In: Differential and Combinatorial Topology (S. S. Cairns, ed.), Princeton University Press 1963, pp. 63-80.
MR 0182020