Previous |  Up |  Next

Article

Keywords:
pension plan; portfolio optimization; constant elasticity of variance; stochastic volatility; asymptotic analysis
Summary:
Based upon an observation that it is too restrictive to assume a definite correlation of the underlying asset price and its volatility, we use a hybrid model of the constant elasticity of variance and stochastic volatility to study a portfolio optimization problem for pension plans. By using asymptotic analysis, we derive a correction to the optimal strategy for the constant elasticity of variance model and subsequently the fine structure of the corrected optimal strategy is revealed. The result is a generalization of Merton's strategy in terms of the stochastic volatility and the elasticity of variance.
References:
[1] Asch, M., Kohler, W., Papanicolaou, G., Postel, M., White, B.: Frequency content of randomly scattered signals. SIAM Rev. 33 519-625 (1991). DOI 10.1137/1033136 | MR 1137513 | Zbl 0736.60055
[2] Beckers, S.: The constant elasticity of variance model and its implications for option pricing. Journal of Finance 35 661-673 (1980). DOI 10.1111/j.1540-6261.1980.tb03490.x
[3] Boulier, J.-F., Huang, S., Taillard, G.: Optimal management under stochastic interest rates: The case of a protected defined contribution pension fund. Insur. Math. Econ. 28 173-189 (2001). DOI 10.1016/S0167-6687(00)00073-1 | MR 1835085 | Zbl 0976.91034
[4] Boyle, P. P., Tian, Y. S.: Pricing lookback and barrier options under the CEV process. Journal of Financial and Quantitative Analysis 34 241-264 (1999). DOI 10.2307/2676280
[5] Cerrai, S.: A Khasminskii type averaging principle for stochastic reaction-diffusion equations. Ann. Appl. Probab. 19 899-948 (2009). DOI 10.1214/08-AAP560 | MR 2537194 | Zbl 1191.60076
[6] Choi, S.-Y., Fouque, J.-P., Kim, J.-H.: Option pricing under hybrid stochastic and local volatility. Quant. Finance 13 1157-1165 (2013). DOI 10.1080/14697688.2013.780209 | MR 3175894 | Zbl 1281.91155
[7] Cox, J. C.: The constant elasticity of variance option pricing model. The Journal of Portfolio Management 23 15-17 (1996). DOI 10.3905/jpm.1996.015
[8] Cox, J. C., Huang, C.-F.: Optimal consumption and portfolio policies when asset prices follow a diffusion process. J. Econ. Theory 49 33-83 (1989). DOI 10.1016/0022-0531(89)90067-7 | MR 1024460 | Zbl 0678.90011
[9] Cox, J. C., Ross, S.: The valuation of options for alternative stochastic processes. Journal of Financial Economics 3 145-166 (1976). DOI 10.1016/0304-405X(76)90023-4
[10] Davydov, D., Linetsky, V.: The valuation and hedging of barrier and lookback options under the CEV process. Manage. Sci. 47 949-965 (2001). DOI 10.1287/mnsc.47.7.949.9804
[11] Deelstra, G., Grasselli, M., Koehl, P.-F.: Optimal design of the guarantee for defined contribution funds. J. Econ. Dyn. Control 28 2239-2260 (2004). DOI 10.1016/j.jedc.2003.10.003 | MR 2078825 | Zbl 1202.91124
[12] Devolder, P., Princep, M. Bosch, Fabian, I. Dominguez: Stochastic optimal control of annuity contracts. Insur. Math. Econ. 33 227-238 (2003). DOI 10.1016/S0167-6687(03)00136-7 | MR 2039284
[13] Fleming, W. H., Soner, H. M.: Controlled Markov Processes and Viscosity Solutions. Stochastic Modelling and Applied Probability 25 Springer, New York (2006). MR 2179357 | Zbl 1105.60005
[14] Fouque, J.-P, Papanicolaou, G., Sircar, K. R.: Derivatives in Financial Markets with Stochastic Volatility. Cambridge University Press Cambridge (2000). MR 1768877 | Zbl 0954.91025
[15] Fouque, J.-P., Papanicolaou, G., Sircar, R., Sølna, K.: Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives. Cambridge University Press Cambridge (2011). MR 2867464 | Zbl 1248.91003
[16] Fredholm, I.: Sur une classe d'équations fonctionnelles. Acta Math. 27 365-390 (1903), French. DOI 10.1007/BF02421317 | MR 1554993
[17] Gao, J.: Optimal portfolios for DC pension plans under a CEV model. Insur. Math. Econ. 44 479-490 (2009). DOI 10.1016/j.insmatheco.2009.01.005 | MR 2519092 | Zbl 1162.91411
[18] Ghysels, E., Harvey, A., Renault, E.: Stochastic volatility. Statistical Methods in Finance Handbook of Statistics 14 North-Holland, Amsterdam (1996). MR 1602124
[19] Haberman, S., Vigna, E.: Optimal investment strategies and risk measures in defined contribution pension schemes. Insur. Math. Econ. 31 35-69 (2002). DOI 10.1016/S0167-6687(02)00128-2 | MR 1956510 | Zbl 1039.91025
[20] Harvey, C. R.: The specification of conditional expectations. Journal of Empirical Finance 8 573-637 (2001). DOI 10.1016/S0927-5398(01)00036-6
[21] Jackwerth, J. C., Rubinstein, M.: Recovering probability distributions from option prices. Journal of Finance 51 1611-1631 (1996). DOI 10.1111/j.1540-6261.1996.tb05219.x
[22] Khas'minskii, R. Z.: On stochastic processes defined by differential equations with a small parameter. Theory Probab. Appl. 11 211-228 (1966), translation from Teor. Veroyatn. Primen. 11 240-259 (1966), Russian. MR 0203788
[23] Kim, J.-H.: Asymptotic theory of noncentered mixing stochastic differential equations. Stochastic Processes Appl. 114 161-174 (2004). DOI 10.1016/j.spa.2004.05.004 | MR 2094151 | Zbl 1079.60055
[24] Merton, R. C.: Optimum consumption and portfolio rules in a continuous-time model. J. Econ. Theory 3 373-413 (1971). DOI 10.1016/0022-0531(71)90038-X | MR 0456373 | Zbl 1011.91502
[25] Noh, E.-J., Kim, J.-H.: An optimal portfolio model with stochastic volatility and stochastic interest rate. J. Math. Anal. Appl. 375 510-522 (2011). DOI 10.1016/j.jmaa.2010.09.055 | MR 2735541 | Zbl 1202.91302
[26] Øksendal, B.: Stochastic Differential Equations. An Introduction with Applications. Universitext Springer, Berlin (2003). MR 2001996 | Zbl 1025.60026
[27] Papanicolaou, G. C., Stroock, D. W., Varadhan, S. R. S.: Martingale approach to some limit theorems. Proc. Conf. Durham, 1976 Duke Univ. Math. Ser., Vol. III, Duke Univ., Durham (1977). MR 0461684 | Zbl 0387.60067
[28] Rubinstein, M.: Nonparametric tests of alternative option pricing models using CBOE reported trades. Journal of Finance 40 455-480 (1985).
[29] Xiao, J., Hong, Z., Qin, C.: The constant elasticity of variance (CEV) model and the Legendre transform-dual solution for annuity contracts. Insur. Math. Econ. 40 302-310 (2007). DOI 10.1016/j.insmatheco.2006.04.007 | MR 2286948 | Zbl 1141.91473
[30] Yuen, K. C., Yang, H., Chu, K. L.: Estimation in the constant elasticity of variance model. British Actuarial Journal 7 275-292 (2001). DOI 10.1017/S1357321700002233
Partner of
EuDML logo