Previous |  Up |  Next

Article

Keywords:
$AF$-algebra; extension; purely infinite simple algebra
Summary:
In this paper, we consider the classification of unital extensions of $AF$-algebras by their six-term exact sequences in $K$-theory. Using the classification theory of $C^*$-algebras and the universal coefficient theorem for unital extensions, we give a complete characterization of isomorphisms between unital extensions of $AF$-algebras by stable Cuntz algebras. Moreover, we also prove a classification theorem for certain unital extensions of $AF$-algebras by stable purely infinite simple $C^*$-algebras with nontrivial $K_1$-groups up to isomorphism.
References:
[1] Blackadar, B.: $K$-Theory for Operator Algebras. (2nd ed.). Mathematical Sciences Research Institute 5 Cambridge University Press, Cambridge (1998). MR 1656031 | Zbl 0913.46054
[2] Eilers, S., Restorff, G., Ruiz, E.: The ordered $K$-theory of a full extension. Can. J. Math. 66 596-625 (2014). DOI 10.4153/CJM-2013-015-7 | MR 3194162
[3] Eilers, S., Restorff, G., Ruiz, E.: Classification of extensions of classifiable $C^*$-algebras. Adv. Math. 222 (2009), 2153-2172. DOI 10.1016/j.aim.2009.07.014 | MR 2562779 | Zbl 1207.46055
[4] Elliott, G. A., Gong, G.: On the classification of $C^*$-algebras of real rank zero. II. Ann. Math. (2) 144 (1996), 497-610. MR 1426886
[5] Elliott, G. A., Gong, G., Li, L.: On the classification of simple inductive limit $C^*$-algebras. II: The isomorphism theorem. Invent. Math. 168 (2007), 249-320. DOI 10.1007/s00222-006-0033-y | MR 2289866 | Zbl 1129.46051
[6] Elliott, G., Kucerovsky, D.: An abstract Voiculescu-Brown-Douglas-Fillmore absorption theorem. Pac. J. Math. 198 (2001), 385-409. DOI 10.2140/pjm.2001.198.385 | MR 1835515 | Zbl 1058.46041
[7] Gong, G.: On the classification of simple inductive limit $C^*$-algebras. I: The reduction theorem. Doc. Math., J. DMV (electronic) 7 (2002), 255-461. MR 2014489 | Zbl 1024.46018
[8] Kucerovsky, D., Ng, P. W.: The corona factorization property and approximate unitary equivalence. Houston J. Math. (electronic) 32 (2006), 531-550. MR 2219330 | Zbl 1111.46050
[9] Lin, H.: Approximately diagonalizing matrices over $C(Y)$. Proc. Natl. Acad. Sci. USA 109 (2012), 2842-2847. DOI 10.1073/pnas.1101079108 | MR 2903374 | Zbl 1262.46039
[10] Lin, H.: Asymptotic unitary equivalence and classification of simple amenable $C^*$-algebras. Invent. Math. 183 (2011), 385-450. DOI 10.1007/s00222-010-0280-9 | MR 2772085
[11] Lin, H.: Approximate homotopy of homomorphisms from $C(X)$ into a simple $C^*$-algebra. Mem. Am. Math. Soc. 205 (2010), 131 pages. MR 2643313
[12] Lin, H.: Full extensions and approximate unitary equivalence. Pac. J. Math. 229 (2007), 389-428. DOI 10.2140/pjm.2007.229.389 | MR 2276517 | Zbl 1152.46049
[13] Lin, H.: Classification of simple $C^*$-algebras of tracial topological rank zero. Duke Math. J. 125 (2004), 91-119. DOI 10.1215/S0012-7094-04-12514-X | MR 2097358 | Zbl 1068.46032
[14] Lin, H.: Classification of simple $C^*$-algebras and higher dimensional noncommutative tori. Ann. Math. (2) 157 (2003), 521-544. MR 1973053
[15] Maclane, S.: Homology. Die Grundlehren der mathematischen Wissenschaften. Bd. 114 Springer, Berlin (1963), German. MR 0156879 | Zbl 0133.26502
[16] Phillips, N. C.: A classification theorem for nuclear purely infinite simple $C^*$-algebras. Doc. Math., J. DMV (electronic) 5 (2000), 49-114. MR 1745197 | Zbl 0943.46037
[17] Rørdam, M.: Classification of extensions of certain $C^*$-algebras by their six term exact sequences in $K$-theory. Math. Ann. 308 (1997), 93-117. DOI 10.1007/s002080050067 | MR 1446202
[18] Rørdam, M., Larsen, F., Laustsen, N.: An Introduction to $K$-Theory for $C^*$-Algebras. London Mathematical Society Student Texts 49 Cambridge University Press, Cambridge (2000). MR 1783408 | Zbl 0967.19001
[19] Rørdam, M., Størmer, E.: Classification of Nuclear $C^*$-Algebras. Entropy in Operator Algebras. Encyclopaedia of Mathematical Sciences 126. Operator Algebras and Non-Commutative Geometry 7 Springer, Berlin (2002). MR 1878881 | Zbl 0985.00012
[20] Wei, C.: Classification of extensions of torus algebra. II. Sci. China, Math. 55 (2012), 179-186. DOI 10.1007/s11425-011-4225-6 | MR 2873811 | Zbl 1253.46066
[21] Wei, C.: Classification of extensions of $A\mathbb T$-algebras. Int. J. Math. 22 (2011), 1187-1208. DOI 10.1142/S0129167X11007227 | MR 2826560
[22] Wei, C.: Universal coefficient theorems for the stable Ext-groups. J. Funct. Anal. 258 (2010), 650-664. DOI 10.1016/j.jfa.2009.10.009 | MR 2557950 | Zbl 1194.46103
[23] Wei, C.: Classification of unital extensions and the BDF-theory. Submitted to Houst. J. Math.
[24] Wei, C., Wang, L.: Isomorphism of extensions of $C(\mathbb T^2)$. Sci. China, Math. 54 (2011), 281-286. MR 2771204 | Zbl 1225.46051
Partner of
EuDML logo